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IV. On the Curves which satisfy given Conditions. By Professor CayLEY, F.R.S.

Received April 18,—Read May 2, 1867.

Tue present Memoir relates to portions only of the subject of the curves which satisfy
given conditions; but any other title would be too narrow: the question chiefly consi-
dered is that of finding the number of the curves which satisfy given conditions; the
curves are either curves of a determinate order » (and in this case the conditions chiefly
considered are conditions of contact with a given curve), or else the curves are conics;
and here (although the conditions chiefly considered are conditions of contact with a
given curve or curves)it is necessary to consider more than in the former case the theory
of conditions of any kind whatever. As regards the theory of conics, the Memoir is
based upon the researches of CHASLES and ZEUTHEN, as regards that of the curves of the
order 7, upon the researches of DE JoNQUIEREs: the notion of the quasi-geometrical
representation of conditions by means of loci in hyper-space is employed by SALMON in
his researches relating to the quadric surfaces which satisfy given conditions. The
papers containing the researches referred to are included in the subjoined list. I reserve
for a separate Second Memoir the application to the present question, of the Principle of
Correspondence. |

List of Memoirs and Works relating to the Curves which satisfy given conditions,
with remarks.

De Jonquikres: Theorémes généraux concernant les courbes géométriques planes
d’un ordre quelconque, Liouv. t. vi. (1861) pp. 113-134. 1In this valuable memoir is
established the notion of a series of curves of the index N ; viz. considering the curves of
the order » which satisfy 3n(n-+3)—1 conditions, then if N denotes how many there
are of these curves which pass through a given arbitrary point, the series is said to be of
the index N.

In Lemma IV it is stated that all the curves C, of a series of the index N can be
analytically represented by an equation F(y, #)=0, which is rational and integral of the
degree N in regard to a variable parameter A: this is not the case; see Annex No. 1.

Cuastes: Various papers in the Comptes Rendus, t. lviii. ¢f seq. 1864-67. The
first of them (Feb. 1864), entitled ¢ Determination du nombre des sections coniques qui
doivent toucher cingq courbes données d’ordre quelconque, ou satisfaire a diverses autres
conditions,” establishes the notion of the two characteristics (@, ») of a system of conics
which satisfy four conditions; viz.  is the number of the seconics which pass thiough
a given arbitrary point, and » the number of them which touch a given arbitrary line.
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76 PROFES3S0R CAYLEY ON THE CURVES

The Principle of Correspondence for points on a line is established in the paper of
June-July 1864. Many of the leading points of the theory are reproduced in the
present Memoir. The series of papers includes one on the conics in space which satisfy
seven conditions (Sept. 1865), and another on the surfaces of the second order which
satisfy eight conditions (Feb. 1866).

SatmoN: On some Points in the Theory of Elimination, Quart. Math. Journ. t. vii. pp.
327-337 (Feb. 1866); On the Number of Surfaces of the Second Degree which can be
described to satisfy nine Conditions, Ibid. t. viii. pp. 1-7 (June 1866),—which two
papers are here referred to on account of the notion which they establish of the quasi-
geometrical representation of conditions by means of loci in hyper-space.

ZrutHEN: Nyt Bidrag . . . Contribution to the Theory of Systems of Conics which
satisfy four conditions, 8°. pp. 1-97 (Copenhagen, Cohen, 1865), translated, with an
addition, in the Nowvelles Annales.

The method employed depends on the determination of the line-pairs and point-pairs,
and of the numerical coefficients by which these have to be multiplied, in the several
systems of conics which satisfy four conditions of contact with a given curve or curves.
It is reproduced in detail, with the enumeration called “ Zrurnen’s Capitals,” in the
present Memoir. ‘

Cavrey: Sur les coniques determinées par cinq conditions d’intersection avec une
courbe donnée.—Comptes Rendus, t. Ixiii. pp. 9-12, July 1866. Results reproduced
in the present Memoir.

D Jonquikris: Two papers, Comptes Rendus, t. Ixiii. Sept. 1866, reproduced and
further developed in the *“ Mémoire sur les contacts multiples d’ordre quelconque des
courbes du degré » qui satisfont & des conditions données de contact avec une courbe
fixe du degré m; suivi de quelques reflexions sur la solution d'un grand nombre de
questions concernant les proprietés projectives des. courbes et des surfaces algébriques,”
Crelle, t. Ixvi. (1866), pp. 289-322,—contain a general formula for the number of curves
C" having contacts of given orders a, b, ¢, . . with a given curve U™ &c., which formula
is referred to and considered in the present Memoir.

D Joxquikres: Recherches sur les séries ou systémes de courbes et de surfaces algé-
briques d’ordre quelconque; suivi d'une reponse &c. 4°. Paris, Gauthier Villars, 1866 *.

On the quasi-geometrical representation of Conditions.—Axticle Nos. 1 to 23.

1. A condition imposed upon a subject gives rise to a relation between the parameters
of the subject; for instance, the subject may be, as in the present Memoir, a plane curve
of a given order, and the parameters be any arbitrary parameters contained in the
equation of the curve. The condition may be onefold, twofold, ... or, generally, £-fold,
and the corresponding relation is onefold, twofold, . . . or £-fold accordingly. Two or
more conditions, each of a given manifoldness, may be regarded as forming together a

* The foregoing list is not complete, and the remarks are not intended to give even a sketch of the contents
of the works comprised therein, but only to show their bearing on the present Memoir,
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single condition of a higher manifoldness, and the corresponding relations as forming a
single relation: and thus, though it is often convenient to consider two or more condi-
tions or relations, this case is in fact included in that of a %-fold condition or relation.
In dealing with such a condition or relation it is assumed that the number of parameters
is at least =% ; for otherwise there would not in general be any subject satisfying the
condition: when the number of parameters is =%, the number of subjects satisfying the
condition is in general determinate.

2. A subject which satisfies a given condition may for shortness be termed a solution
of the condition; and in like manner any set of values of the parameters satisfying the
corresponding relation may be termed a solution of the relation. Thus for a A-fold
condition or relation, and the same number % of parameters, the number of solutions is
in general determinate.

3. A condition may in some cases be satisfied in more than a single way, and if a
certain way be regarded as the ordinary and proper one, then the others are special ox
improper: the two epithets may be used conjointly, or either of them separately, almost
indifferently. For instance, the condition that a curve shall touch a given curve (have
with it a two-pointic intersection) is satisfied if the curve have with the given curve a
proper contact; or if it have on the given curve a node or a cusp (or, more specially, if
it be or comprise as part of itself two coincident curves); or if it pass through a node
or a cusp of the given curve: the first is regarded as the ordinary and proper way of
satisfying the condition; the other two as special or improper ways; and the correspond-
ing solutions are ordinary and proper solutions, or special or improper ones accordingly.
This will be further explained in speaking of the locus which serves for the representa-
tion of a condition. ‘

4. A set of any number, say », of parameters may be considered as the coordinates of
a point in w-dimensional space; and if the parameters are connected by a onefold, two-
fold, . . . or A-fold relation, then the point is situate on a onefold, twofold, . . . or A-fold
locus accordingly; to the relation made up of two or more relations corresponds the
locus which is the intersection or common locus of the loci corresponding to the several
component relations respectively. A locus is at most »-fold, viz. it is in this case a point-
system. The relation made up of a %-fold relation, an /-fold relation, &c., is in general
(k414 &c.)fold, and the corresponding locus is (£+-!-&ec.)fold accordingly.

5. The order of a point-system is equal to the number of the points thereof, where,
of course, coincident points have to be attended to, so that the distinct points of the
system may have to be reckoned each its proper number of times. The locus corre-
sponding to any linear j-fold relation between the coordinates is said to be a j-fold omal
locus ; and if to any given £-fold relation we join an arbitrary (w—#)fold linear relation,

that is, intersect the %-fold locus by an arbitrary (w—Z%)fold omal locus, so as to obtain

a point-system, the order of the A-fold relation or locus is taken to be equal to the

number of points of the point-system, that is, to the order of the point-system. And

this being so, if a £-fold relation, an /-fold relation, &c. are completely independent, that
N 2
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is, if they are not satisfied by values which satisfy a less than (A+!+&ec.)fold relation,
or, what is the same thing, if. the Z-fold locus, the {-fold locus, &c. have no common
less than (%14 &c.)fold locus, then the relations make up together a (k474 &c.)fold
relation, and the loci intersect in a (k4-I+4&c.)fold locus, the orders whereof are
respectively equal to the product of the orders of the given relations or loci.. In parti-
cular if we have k474 &c.=w, then we have an «-fold relation, and corresponding
thereto a point-system, the orders whereof are respectively equal to the product of the
orders of the given relations or loci.

6. A Z-fold relation, an /-fold relation, &c., if they were together equivalent to a less
than (%474 &ec.)fold relation, would not be independent; but the relations, assumed to
be independent, may yet confain a less than (k4 (- &ec.)fold relation, that is, they may
be satisfied by the values which satisfy a certain less than (£-74 &c.)fold relation (say
the common relation), and exclusively of these, only by the values which satisfy a proper
(k4 14&c.)fold relation, which is, so to speak, a residual equivalent of the given relations.
This is more clearly seen in regard to the loci; the %-fold locus, the I-fold locus, &c.
may have in common a less than (44{+&c.)fold locus, and besides intersect in a resi-
dual (k474 &c.)fold locus. (It is hardly necessary to remark that such a connexion
between the relations is precisely what is excluded by the foregoing definition of com-
plete independence.) In particular if £+4-/+4&c.=uw, the several loci may intersect, say
in an (@—j)fold locus, and besides in a residual »-fold locus, or point-system. The order
(in any such case) of the residual relation or locus is equal to the product of the orders
of the given relations or loci, less a reduction depending on the nature of the common
relation or locus, the determination of the value of which reduction is often a complex
and difficult problem.

7. Imagine a curve of given order, the equation of which contains » arbitrary para-
meters: to fix the ideas, it may be assumed that these enter into the equation rationally,
so that the values of the parameters being given, the curve is uniquely determined.
Suppose, as above, that the parameters are taken to be the coordinates of a point in
w-dimensional space; so long as the curve is not subjected to any condition, the point in
question, say the parametric point, is an arbitrary point in the »-dimensional space; but
if the curve be subjected to a onefold, twofold, . . . or A-fold condition, then we have a
onefold, twofold, ... or A-fold relation between the parameters, and the parametric
point is situate on a onefold, twofold, . . . or %-fold locus accordingly: to each position
of the parametric point on the locus there corresponds a curve satisfying the condition,
that is, a solution of the condition. In the case where the condition is «-fold, the locus
is a point-system, and corresponding to each point of the point-system we have a solution
of the condition ; the number of solutions is equal to the number of points of the point-
system.

8. Considering the general case where the condition, and therefore also the locus, is
k-fold, it is to be observed that every solution whatever, and therefore each special solu-
tion (if any), corresponds to some point on the %-fold locus; we may therefore have on
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the £-fold locus what may be termed ¢ special loci,” viz. a special locus is a locus such
that to each point thereof corresponds a special solution. A special locus may of course
be a point-system, viz. there are in this case a determinate number of special solutions
corresponding to the several points of this point-system. We may consider the other
extreme case of a special £-fold locus, viz. the %-fold locus of the parametric point may
break up into two distinct loci, the special £Z-fold locus, and another £-fold locus the several
points whereof give the ordinary solutions: we can in this case get rid of the special
solutions by attending exclusively to the last-mentioned £-fold locus and regarding it as
the proper locus of the parametric point. But if the special locus be a more than £-fold
locus, that is,if it be not a part of the A-fold locus itself, but (as supposed in the first
instance) a locus on this locus, then the special solutions cannot be thus got rid of : we:
have the %-fold locus of the parametric point, a locus such that to every point thereof
there corresponds a proper solution, save and except that to the points lying on the
special locus there correspond special or improper solutions. It is to be noticed that
the special locus may be, but that it is not in every case, a singular locus on the £-fold
locus. ‘ )

9. Suppose that the conditions to be satisfied by the curve are a k-fold condition, an
l-fold condition, &c. of a total manifoldness=a. If the conditions are completely inde-
pendent (that is, if the corresponding relations, ante, No. 5, are completely independent),
we have a £-fold locus, an [-fold locus, &c., having no common locus other than the point-
system of intersection, and the number of curves which satisfy the given conditions, oxr
(as this has been before expressed) the number of solutions, is equal to the number of
points of the point-system, or to the order of the point-system, viz. it is equal to the
product of the orders of the loci which correspond to the several conditions respectively ;
among these we may however have special solutions, corresponding to points situate on
the special loci upon any of the given loci; but when this is the case the number of these
special solutions can be separately calculated, and the number of proper solutions is
equal to the number obtained as above, less the number of the special solutions.

-~ 10. If, however, the given conditions are not completely independent (that is, if the
corresponding relations are not completely independent), then the £-fold locus, the {-fold
locus, &c. intersect in a common (w—j)fold locus, and besides in a residual point-system.
The several points of the (w—j)fold locus give special solutions—in fact the very notion
of the conditions being properly satisfied by a curve implies that the curve shall satisfy
a true (k414-&ec.)fold, that is, a true -fold condition; the proper solutions are there-
fore comprised among the solutions given by the residual point-system, and the number
of them is as before equal to the order of the point-system, or number of the points
thereof, less the number of points which give special solutions: the order of the point-
system is, as has been seen, equal to the product of the orders of the %-fold locus, the
I-fold locus, &c., less a reduction depending on the nature of the common (w—j)fold
locus, and the difficulty is in general in the determination of the value of this reduction.
11. In all that precedes, the number of the parameters has been taken to be »; but if
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the parameters are taken to be contained in the equation of the curve homogeneously, then
the parameters before made use of are in fact the ratios of these homogeneous para-
meters; and using the term henceforward as referring to the homogeneous parameters,
the numbers of the parameters will be =w--1.

12. T assume also that the equation of the curve contains the parameters linearly:
this being so, the condition that the curve shall pass through a given arbitrary point
implies a linear relation between the parameters; and the condition that the curve
shall pass through j given points, a j-fold linear relation between the parameters. It
follows that the number of the curves which satisfy a given %-fold condition, and besides
pass through w—Z% given points, is equal to the order of the £-fold relation, or of the
corresponding £-fold locus; and thus if we define the order of the £-fold condition to be
the number of the curves in question, the condition, relation, and locus will be all of the
same order, and in all that precedes we may (in place of the order of the relation or of the
locus) speak of the order of the condition. Thus, subject to the modifications occasioned
by common loci and spedial solutions as above explained, the order of the (A+7+ &c.)-
fold condition made up of a Z-fold condition, a {-fold condition, &c., is equal to the
product of the orders of the component conditions; and in particular if 47+ &c.=a,
then the order of the »-fold condition, or number of the solutions thereof, is equal to
the product of the orders of the component conditions.

13. The conditions to be satisfied by the curve may be conditions of contact with a
given curve or curves. In particular if the curve touch a given curve, the parametric point
is then situate on a onefold locus. It is to be noticed in reference hereto that if the
given curve have nodes or cusps, then we have special solutions, viz. if the sought for
curve passes through anode or a cusp of the given curve ; and each such node or cusp gives
rise to a special onefold locus, presenting itself in the first instance as a factor of the one-
fold locus of the parametric point; this is, however, a case where the special locus is of
the same manifoldness as the general locus (ante, No. 8), and is consequently separable ;
throwing off therefore all these special loci, we have a onefold locus which no longer
comprises the points which correspond to curves passing through a node or a cusp of the
given curve; the onefold locus, so divested of the special onefold factors, may be termed
the “ contact-locus ” of the given curve. To each point of the contact-locus there corre-
sponds a curve having with the given curve a two-pointic intersection, viz. this is either a
proper contact, or it is a special contact, consisting in that the sought for curve has on the
given curve a node or cusp, or (v’ ich is a higher speciality) in that the sought for curve
is or contains as part of itself o or more coincident curves (ante, No. 8). To a point
in general on the contact-locus there corresponds a curve having a proper contact with
the given curve, save and except that to each point on any one of certain special loci on
the contact-locus there corresponds a curve having some kind of special contact as above
with the given curve. To fix the ideas, it may be mentioned that for the curves of the
order 7 which touch a given curve of the order m and class », the order of the contact-
locus is =n-+(2r—2)m.
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14. If, then, the curve touch a given curve, the parametric point is situate on the con-
tact-locus of that curve. If it touch a second given curve, the parametric pointis in like
manner situate on the contact-locus of the second given curve, that is, it is situate on
the twofold loeus which is the intersection of the two contact-loci; and the like in the
case of any number of contacts each with a distinct given curve. But if the curve,
instead of ordinary contacts with distinct given curves, has either a contact of the second,
or third, any higher order, or has two or more ordinary or other contacts with the same
given curve, then if the total manifoldness be =%, the parametric point is situate on a
k-fold locus, which is given as a singular locus of the proper kind on the onefold con-
tact-locus; so that the theory of the contact-locus corresponding to the case of a single
contact with a given curve, contains in itself the theory of any system whatever of ordi-
nary or other contacts with the same given curve, viz. the last-mentioned general case
depends on the discussion of the singular loci which lie on the contact-locus. And
similarly, if the curve has any number of ordinary or other contacts with each of two or
more given curves, we have here to consider the intersections of singular loci lying on
the contact-loci which correspond to the several given curves respectively, or, what is
the same thing, to the singular loci on the intersection of these contact-loci; that is, the
theory depends on that of the contact-loci which belong to the given curves respectively.

15. Suppose that the curve which has to satisfy given conditions is a line; the equa-
tion is ax4-by-+-cz=0, and the parameters (a, b, ¢) are to be taken as the coordinates of
a point in a plane. Any onefold condition imposed upon the line establishes a onefold
relation between the coordinates («, 4, ¢), and the parametric point is situate on a curve;
a second onefold condition imposed on the line establishes a second onefold relation
between the coordinates (o, &, ¢), and the parametric point is thus situate on a second
curve; it is therefore determined as a point of intersection of two ascertained curves.
In particular if the condition imposed on the line is that it shall touch a given curve, the
locus of the parametric point is a curve, the contact-locus; (this is in fact the ordinary
theory of geometrical reciprocity, the locus in question being the reciprocal of the given
curve;) and the case of the twofold condition of a contact of the second order, or of
two contacts, with the given curve, depends on the singular points of the contact-locus,
or reciprocal of the given curve; in fact according as the line has a contact of the
second order, or has two contacts with the given curve (that is, as it is an inflexion-
tangent, or a double tangent of the given curve), the parametric point is a cusp or a node
on its locus, the reciprocal curve: this is of course a fundamental notion in the theory
of reciprocity, and it is only noticed here in order to show the bearing of the remark
(ante, No. 14) upon the case now in hand where the curve considered is a line.

16. If the curve which has to satisfy given conditions is a conic

(a, b, ¢, f, 9, RY @, 9, 2)*=0,
we have here six parameters (o, b, ¢, f, ¢, k), which are taken as the coordinates of a
point in 5-dimensional space. It may be remarked that in this 5-dimensional space
‘we have the onefold cubic locus abe—af*—bg*—ch*+2fgh=0, which is such that to
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any position of the parametric point upon it there corresponds not a proper conic but a
line-pair; this may be called the discriminant-locus. 'We have also the threefold locus
the relation of which is expressed by the six equations
(be—f*=0, ca—¢g*=0, ab—h*=0, gh—af=0, hf—bg=0, fg—ch=0),

which is such that to any position of the parametric point thereon, there corresponds
not a proper conic but a coincident line-pair. I call this the Bipoint-locus*, and I notice
that its order is =4; in fact to find the order we must with the equations of the
Bipoint combine two arbitrary linear relations,

(*Ya, b, ¢, f, g, h)=0,

(*Xa, b, ¢, f, g, h)=0;
the equations of the locus are satisfied by

abic:frgih=c®: B9 Py iy o

(where e: (3:y are arbitrary); and substituting these values in the linear relations, we
have two quadric equations in (e, 3, ¥), giving four values of the set of ratios (x:B:y);
that is, the order is =4, or the Bipoint is a threefold quadric locus.

17. The discriminant-locus does not in general present itself except in questions
where it is a condition that the conic shall have a node (reduce itself to a line-pair);
thus for the conics which have a node and touch a given curve (m, %), or, what is the
same thing, for the line-pairs which touch a given curve (m, n), the parametric point is
here situate on a twofold locus, the intersection of the discriminant-locus with the con-
tact-locus. It may be noticed that this twofold locus is of the order 3(n-2m), but that
it breaks up into a twofold locus of the order 3n, which gives the proper solutions;
viz. the nodal conics which touch the given curve properly, that is, one of the two lines
of the conic touches the curve; and into a twice repeated twofold locus of the order 3m
which gives the special solutions, viz. in these the nodal conic has with the given curve
a special contact, consisting in that the node or intersection of the two lines lies on
the given curve. By way of illustration see Annex No. 2. But the consideration of the
Bipoint-locus is more frequently necessary.

18. Suppose that the conic satisfies the condition of touching a given curve; the
parametric point is then situate on a onefold contact-locus (a, , ¢, f; ¢, h)7=0 (to fix
the ideas, if the given curve is of the order m and class n, then the order ¢ of the contact-
locus is =n-2m). The contact-locus of any given curve whatever passes through the
Bipoint-locus; in fact to each point of the Bipoint-locus there corresponds a coincident
line-pair, that is, a conic which (of course in a special sense) touches the given curve
whatever it be; and not only so, but inasmuch as we have a special contact at each
of the points of intersection of the given curve with the coincident line-pair regarded as
a single line, that is, in the case of a given curve of the m-th order, m special contacts,
the Bipoint-locus is a multiple curve on the corresponding contact-locus.

* In framing the epithet Bipoint, the coincident line-pair is regarded as being really a point-pair: see post,
No. 30.
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19. If the conic has simply to touch a given curve of the order m, and class n,, then
the order of the condition (or number of the conics which satisfy the condition, and be-
sides pass through four given points) is equal to the order of the contact-locus, that is,
it is =mn,+2m,. If the conic hasalso to touch a second given curve of the order m, and
class n,, then the order of the twofold condition (or number of the conics which satisfy
the twofold condition, and besides pass through three given points) is equal to the order
of the intersection or common locus of the two contact-loci; and these being of the
orders n,-+2m, and n,-2m, respectively, the order of the intersection and therefore that
of the twofold condition is =(n,+2m,)(n,+2m,). But in the next succeeding case it
becomes necessary to take account of the singular locus.

20. If the conic has to touch three given curves of the order and class (m,, n,),
(my, 1,), (Mg, my) Tespectively, we have here three contact-loci of the orders (n,+42m,),
ny+2my,, n,-+2m, respectively; these intersect in a threefold locus, but since each of
the contact-loci passes through the threefold Bipoint-locus, this is part of the intersec-
tion of the three contact-loci; and not only so, but inasmuch as they pass through the
Bipoint-locus m,, m,, m, times respectively, the Bipoint-locus must be counted m m,m,
times, and its order being =4, the intersection of the contact-locus is made up of the
Bipoint reckoning as a threefold locus of the order 4m,mym,, and of a residual threefold
locus of the order

(1,4 2m, ) (0, 2m, ) (105 4 2m5) — dmym g,
=005+ 2(n,nms+&c.) +4(nmym,+&e.) 4+ dmmams ;
and the order of the threefold condition (or number of the conics which touch the three
given curves, and besides pass through two given points) is equal to the order of the
residual threefold locus, and has therefore the value just mentioned.

21. In going on to the cases of the conics touching four or five given curves, the same
principles are applicable; the contact-loci have the Bipoint (a certain number of times
repeated) as a common threefold locus, and they besides intersect in a residual fourfold
or (as the case is) fivefold locus, and the order of the condition is equal to the order of
this residual locus; but the determination of the order of the residual locus presents
the difficulties alluded to, ante, No. 10. I donot at present further examine these cases,
nor the cases of the conics which have with a given curve or curves contacts of the
second or any higher order, or more than a single contact with the same given curve.

22. The equation of the conic has been in all that precedes considered as containing
the six parameters (@, b, ¢, f, ¢, &); but if the question as. originally stated relates
only to a class of conics the equation whereof contains linearly 2, 3, 4, or 6 parameters,
or if, reducing the equation by means of any of the given conditions, it can be brought to
the form in question, then in the latter case we may employ the equation in such re-
duced form, attending only to the remaining conditions; and in either case we have the
equation of a conic containing linearly 2, 3, 4, or 5 parameters, which parameters are
taken as the coordinates of a point in 1+, 2-, 3-, or 4-dimensional space, and the discussion
relates to loci in such dimensional space. This is in fact what is done in Annex No. 2

MDCCCLXVIIL 0
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above referred to, where the conics considered being the conics which pass through three
given points, the equation is taken to be fyz+gza+hay=0, and we have only the three
parameters (f, ¢, £); and also in Annex No. 3, where the conics pass through two given
points, and are represented by an equation containing the four parameters (a, b, ¢, k): 1
give this Annex as a somewhat more elaborate example than any which is previously
considered, of the application of the foregoing principles, and as an investigation which
is interesting for its own sake. See also Annexes 4 and 5, which contain other exam-
ples of the theory. The remark as to the number of parameters is of course applicable
to the case where the curve which satisfies the given conditions is a curve of any given
order 7; the number of the parameters is here at most =4(r+1)(r+2), and the space
therefore at most 47(r+3)dimensional ; but we may in particular cases have »+1 para-
meters, the coordinates of a point in w-dimensional space, where w is any number less
than 4r(r+3).

23. I do not at present consider the case of a curve of the order 7, or further pursue
these investigations; my object has been, not the development of the foregoing quasi-
geometrical theory, so as to obtain thereby a series of results, but only to sketch out the
general theory, and in particular to establish the notion of the order of condition, and
to show that, as a rule (though as a rule subject to very frequent exceptions), the order
of a compound condition is equal to the product of the orders of the component condi-
tions. The last-mentioned theorem seems to me the true basis of the results contained
in a subsequent part of this paper in connexion with the formule of DE JONQUIERES,
post, No. T4 et seq. But I now proceed to a different part of the general subject.

Reproduction and Development of the Researches of CHASLES and ZEUTHEN.
Article Nos. 24 to 72.

24. The leading points of CHASLES’S theory are as follows: he considers the conics
which satisfy four conditions (4X), and establishes the notion of the characteristics
(@, v) of such a system, viz. w, =(4X ), denotes the number of conics in the system
which pass through a given (arbitrary) point, and »,—(4X/), the number of conics in

the system which touch a given (arbitrary) line. We may say that w is the parametric
order, and » the parametric class of the system.

25. The conics
G (D D CHDY 1D

which pass through four given points, or which pass through three given points and
touch a given line, &c., ... or touch four given lines, have respectively the characteristics

1,2), (24), (44, (42), (2 1)

26. A single condition (X) imposed upon a conic has two representative numbers, or
simply representatives, (¢, 3); viz. if (4Z) be an arbitrary system of four conditions,

and (u, ») the characteristics of (4Z), then the number of the conics which satisfy the
five conditions (X, 47Z) is=aw-r.



WHICH SATISFY GIVEN CONDITIONS. 85

27. As an instance of the use of the characteristics, if X, X/, X' X" X" be any five
independent conditions, and (&, 8), . . . («", 8") the representatives of these conditions
respectively, then the number of the conics which satisfy the five conditions (X, X!, X",
X XHII) is

=(1, 2, 4, 4, 2, 1}a, B)(, B')(", B")(", B")(«"", B")
viz. this notation stands for lea'e/ o +23ado"e"@". . .4+1BE'B"B"B".

28. In particular if X be the condition that a conic shall touch a given curve of the order
m and class n, then the representatives of this condition are (n, m), whence the number
of the conics which touch each of five given curves (m, n), . . . (m", #"™) is

=(1, 2, 4, 4, 2, 1]{12, m)(%l’ ml)(n”, mll)(nlll, mlll)(nllll’ mll!l).
29. A system of conics (4X) having the characteristics (w, v), contains

2v—w line-pairs, that is, conics each of them a pair of lines; and
2uw—v point-pairs, that is, conics each of them a pair of points (conigues injfini-
ment aplaties).

30. I stop to further explain these notions of the line-pair and the point-pair; and
also the notion of the line-pair-point.

A conic is a curve of the second order and second class; qua curve of the second
order it may degenerate into a pair of lines, or line-pair (but the class is then=0) : qua
curve of the second class it may degenerate into a pair of points, or point-pair (but the
order is then=0). The two lines of a line-pair may be coincident, and we have then a
coincident line-pair; such a line-pair (it must I think be postulated) ordinarily arises,
not from a line-pair the two lines of which become coincident, but from a proper conic,
flattening by the gradual diminution of its conjugate axis, while its transverse axis
remains constant or approaches a limit different from zero ; the conic thus tends (not to
an indefinitely extended but) to a terminated line*; in other words, the tangents of the
conic become more and more nearly lines through two fixed points, the terminations of
the terminated line; and these terminating points, which continue to exist up to the
instant when the conjugate axis takes its limiting value=0, are regarded as still existing
at this instant, and the coincident line-pair as being in fact the point-pair formed by the
two terminating points. Similarly the two points of a point-pair may be coincident,
and we have then a coincident point-pair; such a point-pair (it must in like manner be
postulated) ordinarily arises, not from a point-pair the two points of which become coin-
cident, but from a proper conic sharpening itself to coincide with its asymptotes, and so
becoming ultimately a pair of lines through the coincident point-pair; and the coincident
point-pair is regarded as being in fact the line-pair formed by some two lines through the
coincident point-pair.

31. In accordance with the foregoing notions we may with propriety, and it will in

* A line is regarded as extending from any point A thereof to B, and then in the same direction, from B
through infinity to A ; it thus consists of two portions separated by these points; and considering either portion
as removed, the remaining portion is a terminated line.

02
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the sequel be found convenient to speak of a point-pair as a line terminated by two.
points on this line, and similarly to speak of a line-pair as a point terminated (that is,
the pencil of lines through the point is terminated) by two lines through the point.

32. If in a point-pair thus considered as a line terminated by two points the two
points become coincident (the line continuing to exist as a definite line), or, what is the
same thing, if in a line-pair thus considered as a point terminated by two lines, the two
lines become coincident (the point continuing to exist as a definite point), we have a
¢ line-pair-point;” viz. this is at once a coincident line-pair and a coincident point-pair; it
may also be regarded as the limit of a conic the axes of which, and the ratio of the con-
jugate to the transverse axis, all ultimately vanish: it may be described as a line termi-
nated each way at a point thereof, or as a point terminated each way at a line
through it. The notion of a line-pair-point first presents itself in ZEUTHEN’S researches,
as will presently appear; but it may be noticed here that line-pair-points, and these the
same line-pair-points, may present themselves among the 2y —u line-pairs, and among
the 2w —» point-pairs of the system of conics 4X.

33. Returning to the foregoing theory of characteristics, I remark that the funda-
mental notion may be taken to be, not the characteristics (&, ») of the conics which
satisfy four conditions, but in every case the number of the conics which satisfy five con-
ditions. Thus for the conics not subjected to any condition, we may consider the

symbols
Coods G /D DS C 1D )
denoting the number of the conics which pass through five given points, or which pass
through four given pointsand touch a given line, &ec. ..., or which touch five given lines;
these numbers are respectively
=1, 2, 4, 4, 2, L

So for the conics which satisfy a given condition X, or two conditions 2X, ..., or five
conditions 5X, we have respectively the numbers

D O (1) N V0 S 70 N G 70 N 00

2X, (s (s 1D C D

X, (=) (/) C /)

X, (), (/)

6X,
where the X, 2X, &c. belong to the symbols which follow: read (X::), (X)), &e.,
or, as we may for shortness represent them,

FJ"’, ym’ E[”, OJ”, 7JII
P
W, J, ¢

o, v

)

S—

n
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viz. the single condition X has the five characteristics (", ...+"), ...; the four conditions
4X, the characteristics (4, ») as in the original theory; and the five conditions 6X a
single characteristic w,.

34. We thus see the origin of the notion of the representatives («, 8) of a single con-
dition X; for considering the arbitrary four conditions 4Z, the characteristics whereof
are (i, »), and assuming that the single characteristic, or number of the conics (X, 47Z),
is =aw+ P, and taking for (4Z) successively the conditions

(o) (D GIDs 1D D,

having respectively the characteristics
1,2), (2,4), 44 (42) (2,1),

we have
W'=10+2,
=204,
= do46,
d"'=4a+24,
7'=2¢+1p,

that is, the characterlstlcs (", V", ¢", d", ¢") of a single condition X are not independent,

but are representable as above by means of two independent quantities («, (3); or, what
is the same thing, we have
NI_ 2‘1/4", 6"':2‘7'”’, ?’":%(y"’—'—o’w)’
which being satisfied, the representatives («, 3) are given by
06::%)’“(27!”—‘“‘[11’”), B:%(ZMIII_TIH)'

85. 1 find that a like property exists as to the characteristics (4", //, ¢, ¢") of the two

conditions 2X, viz. these are not independent but are connected by a single linear relation,
" 3 II +3 U O

This may be proved in the case where the conditions 2X are two separate conditions
(X, X'); viz. let the representatives of these be («, B8), («', ') respectively, then com-
bining with them the three arbitrary conditions X", X", X" having respectively the
representatives («', §'), (<", "), (", "), we have the general equation

(X, XI, XII’ }(ﬂl7 XIIII)=(1, 27 4:, 4:, 2, 11“’ B)(“l’ B!)(“"’ BN)(“III, BW)(“I/H, BINI);

taking herein
(X, X, X)=(-~), (:/), (- /1) (1))

successively, and observing that the representatives of ( - ) are (1, 0) and those of (/) are
(0, 1), we thus obtain for (', /', ¢', o"), characteristics of (X, X'), the values

w'=(1, 2, 4Ye, B)(, 6%
V'=(2, 4, 4Xo, B)(, B).
¢'=(4, 4, 2Ya, B)(«, B),

=(4, 2, 1Y, B)(«, B),
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viz. p'=1ae' +2(«f +'B)+ 463, &c.), and these values give identically
t g
2{1'"_ 37"+3€"—20J,=0,

which is the foregoing equation. And I assume that the theorem extends to the case
of two inseparable conditions 2X, but in this case I do not even know where the proof
is to be sought for.
The characteristics (w, v, ¢') of the three conditions 3X are in general independent.
36. It has been mentioned that if («, 8) are the representatives of the condition X,
and (w, ») the characteristics of the conditions 47, then

(X, 4Z)=opw+P;

this is the most convenient form of the theorem, but as («, 3) are known functions of
“the characteristics (u", ¥, ¢, ", #") of the condition X, the equation is in effect an ex-
pression for (X, 4Z) in terms of the characteristics of X and 47 respectively.

There is, similarly, an expression for (2X, 3Z) in terms of the characteristics
(&, ¥, ¢, o') of 3Z (satisfying the relation p'—3/'+3¢'—o'=0) and the characteristics
(w, v, ¢) of 2X, viz. we have

(2X, 8Z)=u( — $d+3)
+v (—3p 5V % — 30')
Fe'( -1V )

This may be easily proved in the case where the conditions 2X are two separable condi-
tions X, X' having the representatives («, 3), («', 8') respectively, and the conditions 37
three separable conditions Z, Z", Z" having the representatives (<, 8'), (¢ )(8"), (", ")
respectively ; we have, in fact,

W=(1, 2, 4Xa BXW, ), w=(1, 2, 4, 41!, B')(&", B)a", B7),

y=(2, 4, 4 ,, » )y v=(2,4,4,2Y ,, ” » )
(=(b 4200 u ) =W AR, s )
d=(4,2,1Y ,, » )

and with these values the function
(X’ XI’ ZH’ ZHI, ZIHI), =(1, 2, 4:, 4’ 2, 11“, B)(“I, ﬁl)(“ll, BN)(“”I, BIH)(“HH, BHH)

is found to be expressible as above in terms of (u, », ¢), (&', 7, ¢, ¢'); but I do not know
how to conduct the proof for the inseparable conditions 2X and 3Z.
37. 1t may be remarked by way of verification that writing successively

(BZ)=(-")s /s 11> (1D
(s 0 6)=(1,2, 4), (2,4, 4), (4,4,2), (4,4, 1),

that is,
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we have in the first case
(2X )= —l¢+ie
—a +3/ 3¢ — 1
+2u— v
=p +ip =+ — )=
and similarly in the other three cases,
(2X-/))=Y, (2X-/))=¢, (2X/[[)=d.
88. Let (, 1, ¢, 0) be the characteristics of 27, (u—2v+3¢—s=0), and (&, 7, ¢, ¢')
the characteristics of 2X, (/' —3/+3¢'—d=0). Then in the formula for (2X, 3Z),

writing successively for 3X '
(2X-), characteristics (w, v, ¢),

(2X/), 3 (4, ¢ ),
we obtain expressions for the characteristics (2X, 27 -) and (2X, 27Z/) of (2X, 27), viz.
eliminating from the formule, first the (¢, ¢/) and secondly the (u, '), each of these may
be expressed in two different forms as follows :—

and

(2X, 2Z -) (2X, 27/)
= =
+Zw — 3

— i +u) —g¢'
+3(ug' +'e) — 3w/ )
—1vd+ve) +3(vd +7e)
= 300 | = 1o
—3ed +3ed
-1/ | —4(gd’ +¢)
—1(¢d +¢'0) +5(v’ Vo)
+3(vd +V¢), —1(vg'+Ve),

the two expressions of the same quantity being of course equivalent in virtue of the
relations between (u, 4, ¢, ¢) and (&, V, ¢, &') respectively.

The characteristics of (X, Z), (X, 2Z), (X, 3Z) are at once deducible from the before-
mentioned expression ew+ B of (X, 47).

89. ZEUTHEN'S investigations are based upon the before-mentioned theorem, that in a
system of eonics (4X), characteristics (w, »), there are 2u—» point-pairs and 2v—w line-
pairs. If in the given system the number of point-pairs is=x and the number of line-
pairs is ==, then, conversely, the characteristics of the system are

p=302r =), y=3(A+2w).
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And by means of this formula he investigates the characteristics of the several systems
of conics which satisfy four conditions (4X) of contact with a given curve or curves, viz.
these are the conics

M), 1, HA)D), 1,1(A, 1), (1,1,1)1), (1,1,1,1),

@ma) @1 5 @11 , (2L1),

@) %2 ;

@ 6L,

4 .
where (1) denotes contact of the first order, (2) of the second order, (3) of the third
order, (4) of the fourth order, with a given curve; (1)(1) denotes contacts of the first
order with each of two given curves, (1, 1) two such contacts with the same given curve,
and so on. A given curve is in every case taken to be of the order m and class n, with d
nodes, z cusps, r double tangents, and s inflexions (m,, %, d,, #,, 71, 4,; My, 7y, &c., as the
case may be). The symbols (1) &c. might be referred to the corresponding curves by a
suffix; thus (1),, would denote that the contact is with a given curve of the order m
(class 7, &c.); but this is in general unnecessary.

40. In a system of conics satisfying four conditions of contact, as above, it is compa-
ratively easy to see what are the point-pairs and line-pairs in these several systems
respectively ; but in order to find the values of A and =, each of these point-pairs and
line-pairs has to be counted not once, but a proper number of times; and it is in the
determination of these multiplicities that the difficulty of the problem consists. I do
not enter into this question, but give merely the results.

41. For the statement of these I introduce what I call the notation of ZEUTHENS
Capitals. We have to consider several classes of point-pairs and the reciprocal classes of
line-pairs. A point-pair may be described (ante, No. 31) as a terminated line, and a
line-pair as a terminated point; and we have first the following point-pairs, viz. :—

A, line terminated each way in the intersection of two curves or of a curve with itself

(node).

B, tangent to a curve, terminated in a curve, and in the intersection of two curves or

of a curve with itself.

C, common tangent of two curves, or double tangent of a curve, terminated each way

in a curve. ‘

D, inflexion tangent of a curve terminated each way in a curve:
and the corresponding line-pairs, viz. :—

A, point terminated each way in the common tangent of two curves or the double

tangent of a curve. :

B!, point of a curve terminated by the tangent of a curve, and by the common tangent

of two curves or double tangent of a curve.

C, intersection of two curves, or of a curve with itself (node), terminated each way by

the tangent to a curve.

D', cusp of a curve terminated each way by the tangent to a curve:
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all which is further explained by what follows; thus in the case (1)(1)(1)(1),
=(1)u,(1)ny(1);(1)m,> the value of A is given as Zm,m,.mym,(=3mmm,m,). Here A is
the number of the point-pairs terminated one way in the intersection of any two m,, m,
of the four curves, and the other way in the intersection of the remaining two ms, m, of

the four curves.
as=dm,m,~+mm, .mm,.

But in the case (1, 1)(1)(1), =(1, 1),,(1),,,(1)n, the value of A is given
Here A denotes the number of the point-pairs, which are either

(dm,m,) terminated one way at a node of m, and the other way at an intersection of
My, My, OF else (mm,.mm,) terminated one way at an intersection of m, m,, and the
other way at an intersection of m, m,: and so in other cases.

42. This being so, we have
M@M)@)A)s =) (1m( L)L,

A=Zmm, .msm, (=3 mmmsm,), 1 A'=3Znmn, .am, (= Snmmm, ),

B=3m,m, .m;.n,(=3Zmmymsn, ), 2 B =3nn, .1, m,(=3Zn,mn,nm, ),

C=3m, jmz. g, (= Zmmgmgn, ). 4 C'=3n,.0,.mgm, (= Zn,nmgm,).
(1, 1)1)(1), =1, 1)n(1),(1)m,e

A= odmm, +mm, .., 1| A= 7am, 1, . 0y,

B= dnm, +dn,m, 2| B= mpmn, +7mn,
+mim,(n—2)m,~mm,(n—2)m, +m,(m—2)m, nm,(m—2)n,
+mm,n,(m—1)+mmyn,(m—1) +nn,my(n—1) Fnnm,(n—1)
+mman(m—2), +n,nm(n—2),

C= TN, 4| C= odnmn,

Fnn,(m—2)m, +nn,(m—2)m, +mm, (n—2)n,~4-mm,(n—2)
+m,n,.3m(m—1), +mymy.in(n—1),

D= mmm,. 31 D= =xnpmn,

(1,1)1,1), =(1,1),(1,1),,

A= % -+ Lmm, (mm, —1), 1] A= or +Lnm, (nm,—1),

B= on,(m,—2) +8,m(m—2) 2| B= m(n—2) +7m(n—2)
Fmm,(n—2)(m,—1)+mm,(n,—2)(m—1), +nm,(m— 2)(n,— 1) +nn,(m, — 2)(n—1),

C= r¢.3my(m,—1) +7.3m(m—1 4| C= 2d.4n(n,—2) +3,.3n(n—1)
+nn,(m—2)(m,—2), “+mm,(n—2)(n,—2),

D=.3m,(m,—1) +4.2m(m—1), 3 D= =z.in,(n,—1) Az, . En(n—1).

MDCCCLXVIII. P
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(1,1, 1)1)=(1,1,1),(1)n,

A= dmm, 1| A= s,

B= 3n—4)m, +n(m—2), 2| B= dm—4m-+rm(n—2),
~+mm,(n—2)(m—3), +nn,(m—2)(n—3),

C= s(m—4)m,+mm, (m—2)m—3), | 4| C= ¥n—4)n, +mm,. 3(n—2)(n—3),

D= «m—3)m, 3] D= #(n—3)n,.

(1,1,1,1), =(1,1,1,1),.
A=1300-1),
B= ¥n—4)(m—4),
C= 7.3(m—4)(m—>5),
D= i.i(m—3)(m—4).

A'=1r(v—1),

B'= 7(m—4)(n—4),
C= 3.{n—4)(n—5),
D= z.4(n—3)(n—4).

>~ 0 D =

43. Secondly, we have the point-pairs:—
E, tangent to curve from intersection of two curves or of a curve with itself (node),
and terminated at the point of contact and the last-mentioned point.
F, tangent to a curve at intersection with another curve or with itself, and terminated
there and at a curve.
G, common tangent of two curves or double tangent of a curve, terminated at one of
the points of contact and at a curve.
D, ut supra.
H, line joining cusp of a curve with intersection of two curves or of a curve with
itself, and terminated at these points.
I, line from cusp of a curve touching a curve, and terminated at the cusp and at a
curve.
J, Inflexion tangent of a curve, terminated there and at a curve
and the corresponding line-pairs, viz.
E/, point on a curve in common tangent of two curves or double tangent of a curve,
and terminated by this tangent and by tangent to a cnrve.
F', point on a curve in common tangent of this and another curve or in double tangent
of this curve, and terminated by this tangent and by tangent to a curve.
D', ut supra.
H', intersection of inflexion tangent of a curve with common tangent of two curves
or double tangent of a curve, and terminated by these lines.
T, intersection of inflexion tangent of a curve with a curve, and terminated by this
tangent and by tangent of a curve:
and this being so,
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2)1)1)s =)V (Lms

E =n.mm,,

F =mm,.m,+mm,.m,,
G =mn,.m, +nn,.m,,
D =m,m,,

H=xm,m,,

I =xnm, “xnm,.

(2)(L, 1)=(2)u(1, 1),
E =on,

F =m.m,(m,—1),

G =nn, (m,—2),
D =i.3m,(m,—1),
H=x,,

I =xn, (m,—2).

(2, 1)), =(2, DL,
E =(n—2).mm,,
F =mm,(m—2)+20m,,
G = nn(m—2)+2rm,,
D=im—3)m,,
H=xmm,, ‘
I =x»(n—38)m, +zn,(m—2),

J =um,.

@2,1,1), =(2, 1, 1),

F =2(m—3),
G =2¢(m—4),

D= i.5(m—3)(m—4),
H= 0=,

I = #(n—3)(m—4),
J = i(m—3).

N = DD S 0o W

St DO = DS W W

P2

N~ DN S e w

Tt DO = DN S W O

E =m.nmn,,

' =nn,.m, +nn,.m,,
G =mm,.n, +mn, . n,
D' =zxnmn,,

H’:m,n,,

1 =mm, +mm,.

E =+m,

¥ =n.n, (n,—1),
G =mm, (n,—2),
D' =x.4n,(n,—1),
H'=ur,

1 =m, (n,—2).

F =(m—2).nn,,
F = wn(n—2) 2,
G =mm,(n—2) +2n,

D =x(n—3)n,,
H'=mmn,,

T =im—3)n,~4m,(n—2),
J' =aun,.

F = ¢(m—4),

F =2¢(n—3),
G'=25(n—4),

D'= z.5(n—3)(n—4),
H= ur,

I' = i(m—3)(n—4),
J' = #(n—3).
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44. Thirdly, we have the point pairs:—

K, common tangent of two curves or double tangent of a curve, terminated at points
of contact.
L, line from cusp of a curve touching a curve, and terminated at cusp and point of
contact.
M, line joining cusp of a curve with cusp of a curve, and terminated by the two
cusps.
N, inflexion tangent terminated each way at inflexion, viz. this is a line-pair-point.
O, cuspidal tangent terminated each way at cusp, viz. this is a line-pair-point :
and the corresponding line-pairs :—
K/, intersection of two curves or of curve with itself (node), and terminated by the
two tangents.
I/, intersection of inflexion tangent of a curve with a curve, and terminated by the
inflexion tangent and the tangent at the intersection.
M/, intersection of inflexion tangent of a curve with inflexion tangent of a curve, and
terminated by the two inflexion tangents.
N', =0, line-pair-point as above.
O, =N, line-pair-point as above:
which being so, we have

(2)(2); =(2)n (2,

K =aum,, 9 K'=mm,,
L =zn,+42mn, 3 I =, +um,
M=xzx,. 1 M =u,"

(2, 2), =(2, 2),-

K=v, 9 K'= 3,
L= #(n-3), 3 L'= (m-3),
M=1x(z—1), 1 M=% -1),
N=, 2 N'= &z,
0 ==. 1 0= .

45. Fourthly, we have the point-pairs:—

P, tangent of a curve at its intersection with another curve or itself, terminated each
way at the point of contact—Uline-pair-point.

Q, common tangent of two curves or double tangent of a curve, terminated each way
at one of the points of contact—Uline-pair-point.

J, ut supra.

R, cuspidal tangent terminated at cusp and at a curve:

and the corresponding line-pairs :—
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P, =Q, line-pair-point.

Q, =P, line-pair-point.

J', ut supra.

R/, inflexion of curve terminated by the inflexion tangent and by tangent to a curve :
which being so, we have

(3)A), =(B)n(Lm,

P =mm,, 2 P'= nm,,
Q= nn,, 2 Q'=mm,,
J = m,, ) J' = xn,
R=xm,. 4 D= m,
(3, 1), =(3, 1),.
P =23, 2 Q'=24,
=27, 2 P =29,
J = {m-38), 5 J = z(n—38),
R= #(m—3). 4 R'= yn—3).

46. And lastly, we have the point-pairs N, O (line-pair-points) and the line-pairs
N, O' (lene-pair-points), ut supra, and

(4), =(4)n-
N=,, l 4 ’ N'==x,

O =zx. 2 O'=:

47. Where in all cases the central column of figures gives the numerical factors
which multiply the corresponding capitals, thus we have

for (1)(1)(1)(1)
A=2 —u=A +2B+44C,
a=2p—v =A'+2B'44C’;
for (1, 1)(1)(1),
A=2 —pu=A +2B +4C +3D,
a=2u—v =A'+2B'44C' 43D,
and so on.

48. The elements (m, n, d, x, 7, &) of a curve satisfy PLUCKER'S six equations, and
ZEUTHEN uses these equations, in a somewhat unsystematic way, to simplify the form
of his results.

It is convenient in his formule to write 3m4-s, =3n+x, =, and to express every
thing in terms of (m, », ), viz. we have for this purpose

20 =m?—m-+8n— 3,

29=n2 — 8 —n— .
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But I make another alteration in the form of his results; he gives, for instance, the
characteristics of (1,1)(1)(1) as

p= [/’mmlm:t +f/‘"(m1n2 + m277/1) +{/',77/17’/2a

v =" mm,+4" (m1n2+m2nl) +' 10y,
where

! =2m( m+ n—3)+ =, =(1,1..),

' =y =2n( m+2n—>5)+27, =(1,1:/),

w"=v"=2n (2m+4 n—5)+23, =(1,1.//),

M=2n( m+ n—3)+ 9, =(1,1///)),
viz. the four components have really the significations (1,1.-.) set opposite to them
respectively ; and accordingly, instead of giving the formule for the two characteristics
of (1,1)(1)(1), I give those for the four characteristics (1,1.".), &c. of (1,1), thus in
every case obtaining formule which relate to a single curve only. Subject to the last-
mentioned variation of form, I give ZEUTHEN’S original expressions in Annex 6; but

here in the text I express them as above in terms of (m, n, ), viz.
49. We have the formule

(1)( i1 )= n+2m,
( -./)=2n44m,
( :/))=4n-+4m,
(- //))=4n+2m,
( ////)=2n~+2m;

LD ) =2me 4 2mnt- Lt — 2m— n—Sa,
( :/)=2m44mn+ #*—2m— n—3e,
(-/))= m*+4mn+2n*—~ m—2n—3a,
( //)=31m*+2mn~+2n*—im—2n—3a.
(1,1, 1)
(2 )=%3m’+2m’n+ mn®+gn’—2m*— 3mn—4n* —22m—22n+ o — 3m—3n4-18),
(+/ )=3sm’+2m’n+2m0*+50°— m’—4dmn— 0*—4fm—245n-+ o — 8m—3n+-20),
(/) )=8m*+ mPn+-2mn’+30° —§m’— S3mn — 20° — 2Em—20n 4 o( — m—3n+13);
(1,1,1,1)
(- )=m*+Emnmn? +tmnd 4 sem!
—3m* — 3P — 2mn* — 0 —Em? — 21mn— 22002 4131 4- 293y,
+ o — §m—3mn—gn* +-&im + S —337) + o 3,
([ y=demt b Y
— 3 —2mn— Smn® —1n® —222m*—21mn — lﬁ—l—n +493p 4191y
+o(—3m*—8mn—§n®+55m443n—357) 402, & ;
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(2)
()= o
(/ )=2e,
(+//)=2a,
(///)= «;
(2,1)

( :)=12m4+12n+(2m+ n—14)e,
( -/ )=24m+24n+(2m~+2n—24)e,
(//)=12m+12n+( m+2n—14)x;

(2,1,1)
( - )=24m*+ 36mn+12n*—168m—168n+ «( m?+2mn41n? —25m —22n+4138) — 502,
( / )=12m>*+ 36mm + 24n>*—168m—168n-+a(3m*+2mn+ n*—L2m—25m4138)— 3«
(2,2)
( - )=2Tm+24n—200e+ 1o,
(/)=24m~+2Tn—200-+50’;
(3)
(:)=—4m—3n43e,
(-/)=—8m—8n+06e,
(/) )=—3m—4n+3e;
(3,1)
( - )=—8m*—12mn—3n’+56m-53n+ «(6m-+3n—39),
( / )=—3m*—12mn— 8n*+53m+56n-+«(3m-+ 60— 39) ;
(4)
(- )=—10m— 8n+ 6,

50. By means of the foregoing formule I obtain, as will presently be shown, the fol-
lowing formule for the number of the conics which satisfy five conditions, viz. :—

(6)=—15m—15n+9¢;
(4,1)=—8m*—20mn—8n*+4104m-+104n~+o(6m+62—66);
(8,2)=120m+120n~+o(—4m—4n—"T78)+ 3u’;

(3,1,1)=—35m*—10m’n—10mn*—3n° - 192m> 4 116mn +1990* — 434m — 434n ;
o+ 6mm--dnt — Sm— S804 291) —Ja;
(2, 2,1)=24m*+54mn-+24n*—468m—468n
+ o —8m—8n+327) +*(Im—+3in—12);
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(2,1,1,1)=6m"+30m*n + 30mn?+ 6n° —174m* — 348mn—1742*4-1320m~+1320n
+o(Fm +mPn+-man® + 0 —1Em? — 26mn—15n’ + 258 m 42§80 —960)
+o(—fm—n+28);

(LLLL1)*=  rhom’+ym'n-+im'n’ +fmn’ +gmn' +rion’
_ 112”24_%”%3”_ 2m2n“’———%mn3—%§n“
_ 11123 m— 21029 men— 21029 mnt—L L 33
AT S L SR — 330
+o —im* —dmin— fmn® — i +22m0 + 23mn 220" — 35 T — 23 n - 486)
+a(§m—+in—15);

51. I observe that by means of the abovementioned expressions of (X, 4Z) and
(2X, 8Z), the foregoing results, other than those for (5), (4, 1), &c., may be presented
in a somewhat different form, viz. we have

(4Z)V)=n( - )+m(/),
where ( - ) denotes (4% - ), (/) denotes (4Z /), and so in other cases, the understood term
being 3Z or 2Z, as the case may be.

(32)2) = (/)
(3Z)(L1) = (: )& —in)

+( -/ )mn —5e)
+( // ) am*—gm) ;
(27Z)(3) = () 3m+ n—3a)
+(: / (—dm—En+3a)
+( - /)(—Em—in +3a)
+(///)( mAdn—3a);
(22)2,1) = (. ){—3m—3n+a(—im~+in+2)}
+( N0 Imtdnte( §mtgn—4)}
+(- /DL amAdnte( fm4gn—4)}
+(///){—3m—3n—+a( gm—in+2)};
(22)(1,1,1)=
(o ) =g —imPn+ime? +En’ + P+ Omn— § n?+3Hm+33n4a(  Em— n—1)}
+( /) Lot §minmn® — lont — o — -t — P — 2t o —fgm—fn-+3)}
+( N0 Lem’ - EminFmne Aen® +Psm? — fmn —Fen— 2pm— I n~-o — fem—1sn+3)}
+( /N0 S+t —pmnt —gg’ — §mP+0mnt § 0 +38m+1into(— §mt §u—1);
in all which formule it is to be recollected that we have
(=3 /)H3C- D= 1))=0.

* Tn my paper in the Comptes Rendus, I gave erroneously the coefficients — 2252y, — 3282, | po(,.. 4 125).
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to which may be joined ,

(Z)(4X)=a(4X -)+5(4X/),
where @, b are the representatives of the condition (Z), and where (4X) is to be consi-
dered as standing successively for (4), (3,1), (2, 2),(2,1,1), and (1, 1, 1, 1), the values
of (4X -) and (4X/) being in each case given by the foregoing Table.

52. The formule are very convenient for the calculation of the numbers of the conics
which satisfy five conditions of contact with two given curves; thus if, for example,
(8Z),=(8),,s denotes the condition of a contact of the third order with a given curve (m,),
then writing for symmetry (2),, in place of (2), we have

(3)m(2)n=%%(3 -/ Jm,
= o—4m,—4n,+ 3a,).

53. To obtain the foregoing expressions of (5), (4, 1), (3,2), (3,1,1), (2, 2,1),
(2,1,1,1), and (1,1,1,1,1), T assume that the given curve breaks up into two curves
(m,n, o) and (m', #, &'), or, as we may for shortness express it, into two curves m and .

We have then

(8)msm=(5)n+(5)ms
viz. the conics which have contact of the Hth order with the aggregate curve m+m' are
made up of the conics which have this contact with the curve m and the conics which
have this contact with the curve m/. Writing this under the form

() sm— (B)a— ()=,
and observing that (5),, is a function ¢(m,, «), and that consequently this is a functional
equation ¢(m—+m/, n+n', a+o')—@(m, 2, a)—@(m', 7', @')=0, the solution is
o(m, n, o)=am-+bn+cex,
where a, b, ¢ are arbitrary constants; but as the solution should be symmetrical in regard
to m, n, we have a=>0, or the solution is ¢(m, n, a)=a(m-+n)-+ce.
54. Similarly we have

(4 D= (4 D= (s D =(8)u L+ (40) (L
viz. the conics which have with the aggregate curve m-+m' the contacts (4, 1) are made
up of the contacts which have the two contacts 4 and 1 with the one curve or with the
other curve, or the contact 4 with the one curve and the contact 1 with the other curve.
The expression on the right-hand side is a known function of (m, n, @), (W, n,d);
hence the form of the functional equation is

o(m+m, ndn, wto)—@(m, n, ) —o(m', ', o')=F(m, n, &, w, w, do);

and any particular solution of this equation being obtained, the general solution is found
by adding to it the term am-bn-+ce. Assuming that the particular solution is symme-
trical in regard to (m, n), then the term to be added is as before=a(m—+n)+ox. And
similarly for (3,2), (8,1, 1), &c.; that is, in every case we have a solution containing
two arbitrary constants a, ¢, which remain to be determined.

MDCCCLXVIII. Q
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55. Now in every case except (5), the number of intersections of the conic with the
curve is >6 (viz. for (4,1),, and (3, 2),, the number is 7, for (3,1,1) and (2,2,1)it is 8,
and for the remaining two cases it is 9 and 10 respectively); hence if the given curve
m be a cubic, the number of conics satisfying the prescribed conditionsis =0; and since
a cubic may be the general cubic or a nodal or a cuspidal cubic, we have the three cases
(m, n, @)=(3, 6, 18), (3, 4,12), and (3, 3,10). 'We have thus in each case three con-
ditions for the determination of the constants @, ¢; so that there is in each case a veri-
fication of the resulting formula.

56. In the omitted case (5),, when the curve m is a cubic, the theory of the conics
(5).. is a known one, viz. the points of contact of these conics, or the “ sextactic” points
of the cubic, are the points of contact of the tangents from the points of inflexion; the
number of the conics (5),, is thus =(n—3)s, viz. in the three cases respectively it is =27,
3,and 0. Hence for determining the constants we have the three equations

9a-418¢=27,
Ta+4+12¢= 3,
6a+10c= 0,

which are satisfied by a=—15, ¢=9, and the resulting formula is
(5)=—15m—16n-+9e.
In the particular case of a curve without nodes or cusps, this is (5)=12n—15m,
=m(12m—27), which agrees with the result obtained in my memoir “On the Sextactic
Points of a Plane Curve,” Phil. Trans. vol. clv. (1865) pp. 545-578.
57. The subsidiary results required for the remaining cases’ (4,1), &c. are at once
obtained from the foregoing formulee for (47)(1), (3Z)(2), &c.; for example, we have

(4)(1)w=2/(—10m— 8n+6c)
+m'(— 8m—10n-+46w),
with like expressions for (3,1),(1),., &c.,

(3)u(2)w = 1o (—8m—8n-+6a),

(3)n(1, 1)y = (30" —3n' Y(—4m—3n+3e)

+(m'n' — o' )(—8m—8n-+6c)
+(3m2—3m')(— 8m—4n+3a) ;

with like expressions for (2, 1),.(2),, (2, 1).(1,1),,, &e. &e.
58. Calculation of (4,1). 'We have

(4 D= (4% Dn—(4, 1)w=(4)n(1)+(4) (1)

= —16mm’ — 20(mn' +m'n) — 1604’

+6(an'+o'n) 4 6(em' +2'm),
the integral of which is

(4,1),= —8m*—20mn— 8n’+a(m +n)+a(6m-+6n--c).
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The particular cases (m, n, «)=(3,6,18), (3, 4,12), (8, 8, 10) give respectively
0=25249a-+418e¢, '
0= 64+4+Ta+12¢,
= 864-6a+410c¢,
satisfied by a=104, c=—66.
59. Calculation of (3,2). We have
(3> 2w —(35 2)n—(35 2)w=(3)n(2) + (8) ()
= —4(med +m'a) — 4(ne +n'e) + Gaer’ ;
the integral is
(3, 2),,=a(m+n)+e(—4m—4n-+c)+ 302,
0=324+492+418¢,
0= 96+T7a+412¢,
0= 60+46a-+10c,

and, as before,

satisfied by ¢=120, ¢=—"78.
60. For the calculation of (3,1, 1) we have similarly
(3,1, D= (3, 1, e (3, L, Dpr=(3)u(Ly L+ (3L, 1),
+(8, V(w3 (D
The function on the right-hand side was of course calculated from the values of
(3)m(1, 1),,, &c.; but there is no use in this (and the more complicated cases which
follow) in actually writing down the values of the function in question; it can in each
case be calculated dackwards from the foregoing expressions of (3, 1, 1) &c., and the
values so obtained be verified by actual substitution. But assuming it to be known,
the solution of the functional equation gives of course the foregoing expression for
(3, 1, 1), except that the terms inm+n and « are therein a(m--n)+-ce; and Ishall in
this and the subsequent cases give only the three equations which determine the constants.
In the present case these are
—38324+9a+18¢=0,
—454+4-Ta+12¢=0,
—3064-6a+10c¢=0,
satisfied by a=—434, ¢=291.
61. Remaining cases (2, 2, 1), (2,1, 1, 1) and (1,1,1,1,1). We have

2 2 Doi— (2 2 D= (2 2)u(LD+ (2 2)m(L)an
(2, D2+ (25 (2o

—1674492+418¢=0,
— 648+4-Ta+12¢=0,

— 462+6a+410c¢=0,
satisfied by a=—468, ¢c=32T7.

and

Q2
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Again,
2,1,1,1)w—(2,1,L,1),—(2, 1,1, 1),= (2,1, 1),1)w+(2 1, 1,1,
+(2 Dully Dot (2 Das()a
+(2)u(L, 1, 1)+ (2)m(1, 1, 1

5400490 +18¢=0,
9280 4 Ta+120=0,
1680 4 6a+100=0,

satisfied by a=1320, ¢=—960; and finally,
(1, 1) 17 19 1)m+ml_(13 1) ]-) 19 1)m_(1’ 1) 19 1) 1)ml= (17 1: 19 ]-)m(]-)m!_l_(]-) 1) 19 1)ml(1)m
+(1,1,1),(1, 1)+ (1, 1, 1)(L, 1

—30618+490a-+4180¢=0,
—140944+70a+120¢=0,
—10692460a¢+120¢=0,

satisfied by 106=6318, 10¢=4860, that is, a= —3%52, ¢=486.

62. The contacts of a conic with a given curve which have been thus far considered
are contacts at unascertained points of the curve; but a conic may have with the given
curve at o given point thereof a contact of the first order, the condition will be denoted
by (2); or a contact of the second order, the condition will be denoted by (3), and so on.
It is to be observed that the conditions (2), (3), &c. are sibireciprocal, the contact at a
given point of the curve is the same thing as contact with a given tangent of the curve;

and

and

but if we write (1) to denote the condition of passing through a given point of the
curve, this is nof the same thing as the condition of touching a given tangent of the
curve; and this last condition, if it were necessary to deal with it, might be denoted by (1).
But I attend only to the condition (1). The expressions for the number of conics which
satisfy such conditions as (1), (2), &c. are obtainable in several ways.

63. (1°) When the total number of conditions is 4, the question may be solved by
ZEUTHEN'S method, viz. by determining the line-pairs and point-pairs of the system 47,
with the proper numerical coefficients, and thence deducing the values of the character-
istics (4Z - ) and (4Z /). A few cases are in fact thus solved in ZEUTHEN’S work.

64. (2°) By the foregoing functional method. Itis to be observed that there is a
difference in the form of the functional equation, and that the general solution is always
given in the form, Particular Solution + Constant, so that there is only a single con-
stant to be determined by special considerations. To take the simplest example, let it
be required to find the number of the conics (3Z) (1, 1): writing for shortness in place
hereof (1, 1), or (in order to mark the curve (m) to which the symbol has reference)
(1, 1),,, let the curve (m) be the aggregate of the curves (m) and (w/). Regarding the
point I as a given point on the curve (m), that is, an arbitrary point in regard to the
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curve (m'), we have thus the equation
C[’ 1)m+ml_(T’ 1)m=( : l)m/’

where the right-hand side is known ; and so in general the form of the functional equa-
tion is always ¢(m+m/)—@(m)= given value, that is,

p(m—+m, n+4n'; w+o')—@(m, n, o) = given function of (m, n, «, m/, #, &');

whence, as stated, the general solution is Particular Solution 4 Constant. In the case
in hand, taking successively (3Z)=(.".), (:/), (+//), and (///), we have in the first of

these cases
, (T, 1pim— (T, 1)=n0'+2m/,
whence (1, 1),=n+2m+ const. =(1, 1)(.".); and the value of the constant being in
any way ascertained to be =—2, we have (1, 1) (.. )=n+2m—2; and the like for the
other three cases. :
65. (8°) The expressions for the number of conics which satisfy such conditions as

(1), (2), &c. are deducible with more or less facility from the corresponding expressions
wherein (1), (2), &c. are replaced by ( - ), (:), &c.; thus from (::1)* =n-2m we deduce

(.1, D)=(::/)=2(.".2)=n+2m—2,

viz. if one of the four arbitrary points of (::/) becomes a point on the curve, then the
condition (::/) is satisfied specially by the conic (..2) which passes through the
remaining three points and touches the curve at the point in question; 2 of the conics
(::/) coincide with the conic in question. We have thus a reduction 2(.". 2), =2, and
the number of the conics (.~ 1, 1 ) is =n-+42m—2. Similarly, we have the system

(-~

)=n+42m—2,
1 )=n+2m—4,
(- 1,1, 1, 1)=n+2m—6,
1, 1,1, 1, 1)=n+2m—8.

—
i
M

Again, two or even three of the given points on the curve may come together without any
reduction being thereby caused, that is, we have

(:2 ) —n+2m—4,
(-2,L1, )=(-3,1 )=n+2m—6,
( 3 L1 1)=( 3,1, )=n+2m—8;

e

but if the four points on the curve coincide in pairs, or, what is the same thing, if in
(2,1, 1, 1) the points 1 and T come to coincide, then there is a special reduction, and

we have o
(2, 2, 1)=n+2m—8 [—(m—2)|=m-+n—6,

* 1 write indifferently (1) (::), (1::) or (:: 1); and so in other cases.
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viz. here (m—2) of the conics come to coincide with the two points considered as a
point-pair or infinitely thin conic. If the points 2 and 2 come to coincide, that is, if the
four given points on the curve all coincide, there is no further reduction, but we have

(/I, 1)=m+n—— 6.

. 66. The expressions involving a single (I) may in every case be reduced by the fore-
going method to depend upon other expressions; thus we have

(32 )11 =1 =22
2z)(L2) =2 =33
s 1 1,1) =(-1,1) —231) ,
Z )1,1,2) =(-1,2 =232 =313,
s (11,1, 1)=(-1,1,1)—2@F 1, 1),

’» (L 3) :( : 3) _4(1) ’
1, 4) =(-4)  =5(6)
&e.,

where, comparing for example the equations for (Z)(1, 1, 2) and (2Z)(1, 1, 1), it will be
observed that in the first case the contacts 1, 2 of the symbol (I, 1, 2) successively
coalesce with the point 1, giving respectively 2(2, 2) and 3(1, 3), the exterior factor
being in each case the barred number, whereas the second case, where the contacts 1, 1
of the symbol (1, 1, 1) are of the same order, we do not consider each of these symbols
separately (thus obtaining 2(2, 1)+2(1, 2), =4(2, 1)), but the identical symbol is taken
only once, giving 2(2, 1). Thus we have also
(1,1,1,1, )=(-1,1,1,1)—2(2, 1, 1, 1).

67. The value of a symbol involving (2), say the symbol (3Z)(2), is connected with
that of $(3% - /); but as an instance of the correction which is sometimes required I
notice the equation '

2, 1,1, 1)=¥1, 1,1+ /)— {3(m—2)(m—3)+3(n—2)n—38)+3(3, 1, 1)+2(Z, 1)},

which I have verified by other considerations.
68. We obtain the series of results:

D =1,

(.)=2,
( :/)=4,
(///)=4’

(/11N)=2;
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(1 1)( o) = n+2m—2,
(:/) =2n+4m—4,
(-/)) =4n+4m—4,
(//]) =4n+42m—2;

@2y = s,
() =%—6,
(//) =20&—3;

LLDC ) =24 2mnt-dni—6m—3n+ 8—3a,
(+)) =2m*+4mn+ n*—6m—>5n+12—3e,
(/) = m*+4mn+20°—3m—6n+ 8—3x;

(ia 3)( ») =—4m—3n—4+3e,
(/) —8m—8n—446a;

(i’ L 2)() = 6m+ 9In+30+a(2m+ n—16),
(/) =21m+18n+30+a(2m-+t2n—26);

(1,1,1, 1)( ) =3mi+2min+ m%2_|_,(1§‘%3_4m2_7mn-—%n2+239—m—%n—36—|—oc(—3m—%n+16),
(/) =3+ 2m°n+2mn? +50° — 2m* — 8mn — 3n* — 1P m—§n— 36+ — Sm—3n+23);

(2)( o) =1,
(/) =2,
(-//) =2,
(/1) =1;

G L) =2me a—t,
(/) =2m-+2n—6,

(/) = m+2n—4;
(é’ 2)( ) =0 — 0,
(/) =6

2Ly = e 2mnt+ 30 —Tm— 0+ 18—,
(/) =im’+2mn+4 n*—fm—Tn+18—4«;
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(_3)() =1,
(+) =2,
(//) =13

@, 1)() = n-+2m—6,
(/) =2n+ m—=6;

ey =,
(/) =1;

which are the several cases for the conics which satisfy not more than four conditions,
and :
69. For the conics satisfying 5 conditions, we have

(5) =1,

(4,1) =m+n—6,

(3,2) =—94a,

(3,1,1) =1m’42mn+Ln2—1im—13n+27 — e,

(2, 3) =—4m—4n—06-43e,

(2,2,1) = 6m+6ntbi+ta(m+n—15),

(2,1,1,1) =im*+m*n+mn*+in*—5m’—8mn—35n* +%tm~+-%4n—175
ol —m—fnt-32),

(1,4) =—10m—8rn—5+4-6e,

(1,1, 38) = —8m*—12mn— 3n*+60m—5Tn+ 36 +«(6m -+ 3n—45),

1,2,2)  =2Tm+24n+27—23a+1o?,

(1,1.1,2) =4Em*+30mn-+2n*—323m—331n—189
e+ 2 Yar —2Tm— St 245) — 3,
(1,1, 1,1, 1)=14m* + Im*n~4-m*n 4+ Fmn® +-en' — fmd — Sm’n— dmn® — fn?
—1212 Bmm— 290907 4425m 421304150
+ o — §m? — Bmn— 50 +4Pm+-Cn— 272 ) 4o,

70. The given point on the curve to which the symbols 1, 2, &c. refer may be a sin-
gular point, and in particular it is proper to consider the case where the point is a cusp.
I use in this case an appropriate notation; a conic which simply passes through a cusp,
in fact meets the curve at the cusp in two points; and I denote the condition of passing

through the cusp by 11 ; similarly, a conic which touches the curveat the cusp, in fact
there meets it in three points, and I denote the condition by 2#1; 1«1, 2«1 are thus special
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forms of 1, 2, and the annexed I indicates the additional point of intersection arising
ipso facto from the point 1 or 2 being a cusp. Similarly, we should have the symbols
8x1, 4x1, 5x1; but it is to be observed that at a cusp of the curve there is no proper
conic having a higher contact than 2«1 ; thus if the symbol contains 3x1, or & fortiori,
if it contain 4%1 or 5«1, the number of the conics is in every case =0; it is thus only
the cases I1z1 and 2%1 which need to be considered.

71. The several modes of investigation which apply to the case of contact at a given
ordinary point of the curve are applicable to the case of contact at a cusp: we may if
we please employ the functional method ; we have here a functional equation of the fore-
going form, p(m~+m')—em= given value (that is, g(m-+m', n+n', a+do')—@(m, n, )=
given function of (m, n, «, m/, %/, &), and the general solution is as before = Particular
Solution4 Constant ; so that there is in each case a single arbitrary constant to be deter-
mined by special considerations. The determination of the constant is in some instances
conveniently effected by means of the case of the cuspidal cubic : see Annexes Nos. 4 and 5.

The formation of the functional equation itself is similar to that in the corresponding
case where the given point on the curve is an ordinary point. For example, we have

LT, Dp—(L L, D= (L Do) = #(L 1 )utm(I, 1)),
AL Dy H3i—w)T),
+ (i —3)(T - /)
+30 = T /)
and we may herein simply change 1 into 1x1. Writing successively 2Z=(: ), (- /) and
(//), we find

(121, 1, 12 )pi—(: Jp=0/( n+2m—3)+m/(2n+42m—B6)+ (30 —In')1 +(m'n' — o) 2+ (3> — L' )4,

( Dmsmw—(* Ju=0' 20+ 4m—6)+m'(4n-+ dm—6)+ (§0° —40')2 4 (m'n’ — 5o )&+ (3> — /)4,
( /D= [ )n=m0/(4n0+4m—6)~+-m/(4n+2m— 3)+ (§0° — )4+ (m'n' — o/ YA+ (Fm” — ym')4,

which only differ from the corresponding expressions with 1 in that they contain

n4+2m—3, 2n+4m—6, dn-+4m—6, 4m-+2n—3
in place of
n+2m—2, 2n+4dm—4, dn+44m—4, dm+2n—2
repectively, and they lead to the expressions for (m, 1,1:), &c., the arbitrary con-
stant being in each case properly determined.
72. We have

@Dy o

(/) =2,
(/) =%
(/) =4
C/1n =%

MDCCCLXVIII. R
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AL D).y = ngom—3,

(:/) =2n+4m—6,
(-/) =4n+4m—6,
(/) =4n+2m—3;

(1,2)

= o—A4,
(-)) =2a—38,
(/1) =2e—4;
(1«1, 1, 1)( ) #29n2+2mn+%7@2—8m—%”+13—%“-7

(/) =2m*+4mn+ »’—8m—"Tn+18—3x,
(/) = m*+4mn42n°—4m—8n-+412—3u;

(m, 3)( . ) =—4m—3n—>5-4 30,

(/) =—8m—8n—6-+60;
ALL2) () = gt Sutdddba@nt n—17),
(/) =20m+16n+442+e(2m-+2n—27);

(121, 1,1, 1)( =2’ 2m’n+ mn®+in*—5m*— an——2n2+i3§m+—93~9n~57+a(—3m—%9z—i—§2—5),

3
( /)=3m’+ 20+ 2mn? +10° — m? — 10mn—40° — gm -+ 25— 54 4o — Sm—3n+42) ;

@Dy =,
(/) =2
(-//) =2,
(/) =1;
L)y —omy a—s,
(-) =2m+2—6,
(/) = mn—d;
L2y
(/) =a—6;

(21,1, 1)( ) = mP2mntint—Tm—4n 421 —3a,

(/) =im’+2mn+4 n*—3Im— Tn418—3a.
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73. The remainder of this table, being the part where the symbols (- ) and (/) do
not occur, I present under a somewhat different form as follows :—

(521) =0,

(421,1) =0,

(321,2) =0,

(321,1,1) =0,

2,3) —(2#1, 8) =0,

2,2,1)  —(21,2,1) =n—3,
2,1,1,1) —(221,1,1,1) =3in—38)(n—4),
(1,4) —(1x1,4) =1,

(1,1,8) —(1x1,1,8)  =(2«I,8)+(n—3),
1,2,2) —(11,2,2) =3(n—38)+=—1,

1,1,1,2) —(121,1,1,2) =(2x1,1,2)+3(n—38)(n—4)+5+2n—8 m—4,
(1,1,1,1,1)—(1#1,1,1,1,1)=(2«1,1,1,1).

These results relating to a cusp, are useful for the investigations contained in the
Second Memoir.

It will be noticed that the symbols which contain 2«1 are not, like those which contain
2, symmetrical in regard to (m,m): the interchange of (m, n) would of course imply the
change of a cusp into an inflexion, and would therefore give rise to a new symbol such
as 211 ; but I have not thought it necessary to consider the formule which contain this
nevﬁymbol.

TInvestigations in extension of those of DE JONQUIERES in relation to the contacts of
Curve of the order r with a given curve.—Nos. 74 to 93.

74. Dk JonquiirEs has given a formula for the number of curves C" of the order »
which have with a given curve U™ of the mth order ¢ contacts of the orders a, 8, ¢, &c.
respectively, which besides pass through p points distributed at pleasure on the curve
U™ (this includes the case of contacts of any orders at given points of the curve U”), and

which moreover satisfy any other &;——E,’l—(a+b+c-|—&c.) —p conditions; viz. the num-

ber of the curves C" is =w(a+1)(6+1)(c+1).. . into
[rm—(a+b4c..)—p T |

+[rm—(a+b+c..)—p—17" & +b +c ..)[D]

1 +[rm—(a+b+c..)—p—2]*(ab+ac+be. .)[DP

+[m;t—(a+b+c..)——p—t]° (abe. .. DY,
R 2



110 PROFESSOR CAYLEY ON THE CURVES

where the curve U™ is a curve without cusps, and having therefore a-deficiency
D=}(m—1)(m—2)—3; the numbers @, b, ¢, .. are assumed to be all of them unequal,
but if we have « of them each=a, 3 of them each=24, &c., then the foregoing expression
is to be divided by [«][]...; and w denotes the number of the curves C” which satisfy
the system of conditions obtained from the given system by replacing the conditions of
the ¢ contacts of the orders @, b, ¢, &c. respectively by the condition of passing through
a+b+c. .. arbitrary points. In order that the formula may give the number of the
proper curves C' which satisfy the prescribed conditions, it is sufficient that the
2r(r+8)—(a+b-+c..)—p conditions shall include the conditions of passing through at
least a certain number T of arbitrary points: this restriction applies to all the formule
of the present section.

75. T will for convenience consider this formula under a somewhat less general form,
viz. I will put p=0, and moreover assume that the 37(r+3)—(a+b-+c..) conditions
are the conditions of passing through this number of arbitrary points; whence p=1.

We have thus a curve C" having with the given curve U™ ¢ contacts of the orders
a, b, c¢.. respectively, and besides passing through 3r(r+48)—(a+b+c..) arbitrary
points ; and the number of such curves is by the formula=(a+1)(6+1)(¢+1), ... into

[rm—(a+b+c..) T
+[rm—(a+b+c..)=11"Ya +b +c ..)[D]
3 [rm—(a+b+c..)—2)*(ab+ac+be..) D]

+[r1n—(;z+b+o L)—t] (abe. .. DT,

where, as before, in the case of any equalities between the numbers , b, ¢, .. ., the expres-
sion is to be divided by [«][B]°.. .

76. I have succeeded in extending the formula to the case of a curve with cusps:
instead of writing down the general formula, I will take successively the cases of a single
contact @, two contacts a, b, three contacts «, b, ¢, &c. ; and then denoting the numbers
of the curves C by (), (a, b), (2, b, ¢), &c. in these cases respectively, I say that we
have

(2)= (a+1)jrm—a,l‘
\+aD |
—a . . x;
(¢, 0)= (a+1)(04+1)[ [rm—a—b] )
{ +[rm—a—b—17(a+5)D]
L+ a D}
—{ a@+1)([rm—a—b—-1]
| 1+ D]
—l—b(a—l—l){[rm—a—b—l]‘ ]
+ aD

Y

J
| (=

-I—ab]:x]’
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(a, b, ¢)=(e+1)(o+1)(c+1) [ [rm—a—b—c T
+[rm—a—b—c—1T(a+b-+c )[D]

+[rm—a—b—c—2]"(ab+acbe)[ D]? .
L+ abe [D]s :

+lrm—a—b—0c—2](a+8)[D}
Lt ab [DJ
+[Zbe(a+1) | [rm—a—b—c—2]
+ ‘ aD

—[Ze(a+1)(0+1) 4’ [rm—a—b—c—17

—abc .

111

7

J

1=

v

}][ﬂ]"’
(=]

77. The foregoing examples are sufficient to exhibit the law; but as I shall have to
consider the cases of four and five contacts, I will also write down the formula for
(@, b, ¢, d), putting therein for shortness

e+b4ctd=a, ab+ .. 4cd=p, abc.. +bed=1y, abed =39,
a+b+c=d, ab+ac+bec=p, abe=y', a+b=0d", ab+p", a=d";

and also the formula for («, b, ¢, d, ¢), putting therein in like manner

(“’ B, 7, 3, 2)9 (“,’ g, v, ), (“": B"a ”)a (“I"a ﬁlu)a (“m’)

for the combinations of (a, b, ¢, d, e), (a, b, ¢, d), (@, b, ¢), (@, b) and (a) respectively.

‘We have

(@ b, ¢, d)= (a+1)0+1)(c+1(da+1) [ [rm—e ]
+[rm—e—1Pa[D]

+[rm—a—8]'9[DJ’

| +[rm—a—27[DT |

L+ 3[D] |

[Bd(e+1)(0+41)(c+1){ [rm—ea—1T
4 F[rm—e—27 [D]

+ 7! [D]3
+[Zed.(a+1)041) [ [rm—e—2]
+[rm—e—38]'%" [D]*
+ #' (DT
—[Zbed(a+1) { [rm—a—3]'

| +[rm—a—318 [DF |

=]

L3}

|

. [D]l}][x]“

+ abed

[=]*
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(@, b, ¢, d, &)=(a+1)(b+1)(c+1)(d+1)(e+1){ [rm—e T
+[rm—e—11]'a [D]
| +[m—a—21p [DP
+[rm—a—3]y [DF
+[rm—a—4]% [D]
+ ¢ [DF
—[Ze(a+1)(0+1)(c+1)(@d+1) [ [rm—a—1} IE3)
+[rm—oa—2] [D],
3 +[rm—e—3]6 [D]? }
+{rm—a—4]y [D]
+ Bl [D:|4
+[Zde(a+1)(0+1)(c+1) [ [rm—a—27 =7
4 +[rm—a—3)%" [D]
+[rm—e—4]'p" [D]?

t 7" [D]
—[Sede(a+1)(0+1)( [rm—a—3] 1 1[=]?
1 +[rm—a—4]o"[D] }
+ B[O
+[Zbede(a+1) { [rm—a—4] }][z]“
_|_ “HII [D]l
- abede . . . . . =P

78. In all these formul® there is, as before, a numerical divisor in the case of any
equalities among the numbers a, 4, ¢, &c. And D denotes, as before, the deficiency, viz.
its value now is D=%(m—1)(m—2)—38—=z; or observing that the class n is =
m?—m—20— 3z, we have D=in—m-+1+41x, or say D=1—m+in+3iz, =1+A if
A= —m+3n+jx.

79. It is to be observed with reference to the applicability of these formule within
certain limits only, that the formule are the only formule which are generally true;
thus taking the simplest case, that of a single contact @, the only algebraical expression
for the number of the curves C” which have with a given curve U a contact of the order
@, and besides pass through the requisite number 17(r+8)—a of arbitrary points, is that
given by the formula, viz.

(a)=(a+1)(rm—a+aD)—ax.

Considering the curve U™ and the order # of the curve C" as given, if @ has successively
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the values 1, 2, ... up to a limiting value of @, the formula gives the number of the
proper curves C” which have with the given curve U™ a contact of the required order a:
beyond this limiting value the formula no longer gives the number of the proper curves
C" which satisfy the required condition, and it thus ceases to be applicable; but there
is no algebraic function of @ which would give the number of the proper curves C" as
well beyond as up to the foregoing limiting value of a.

80. The formulz are applicable provided only the conditions include the conditions
of passing through a sufficient number of arbitrary points; viz. when the number of
arbitrary points is sufficiently great, it is not possible to satisfy the conditions specially
by means of improper curves C’, being or comprising a pair of coincident curves. Thus
to take a simple example, suppose it is required to find the number of the conics which
touch a given curve ¢ times and besides pass through 5—# given points: if the number
of the given points be 4 or 3 there is no coincident line-pair through the given points,
and therefore no coincident line-pair satisfying the given conditions ; if the number of the
given points is =2, then the line joining these points gives a coincident line-pair having
at each of its m intersections with the given curve a special contact therewith, that is,
having in 4m(m— 1)(m—2)ways three special contacts with the given curve; if the number
of the given points is 1 or 0, then in the first case any line whatever through the given
point, and in the second case any line whatever, regarded as a coincident line-pair, has
m special contacts with the given curve; and so in general there is a certain value for
the number of given points, for which value the conditions of contact may be satisfied by

" a determinate number of improper curves C’, and for values inferior to it the conditions
may be satisfied by infinite series of improper curves C". It is by such considerations
as these that Du Jonquiires has determined the minimum value T of the number of
arbitrary points to which the conditions should relate in order that the formule may
be applicable: I refer for his investigation and results to paragraphs XVII and XVIII of
his memoir. I remark that in the case where the number of improper solutions is
finite, the formula can be corrected so as to give the number of proper solutions by
simply subtracting the number of the improper solutions: but this is not so when the
improper solutions are infinite in number; the mode of obtaining the approximate
formula is here to be sought in the considerations contained in the first part of the pre-
sent Memoir; see in particular ante, Nos. 8, 9 & 10.

81. The expressions for (@), (@, b), &c. may be considered as functions of rm, 14 A,
and #, and they vanish upon writing therein 7m=0, A=0, x=0; theyare consequently
of the form (rm, A, z)'4(rm, A, z)’+ &c., and I represent by [@], [a, 87, &c. the several
terms (rm, A, z)', which are the portions of (a), (a, 8), &c. respectively, linear in rh_z,
A, and z. The terms in question are obtained with great facility ; thus. to fix the ideas,
considering the expressions for (a, b, ¢, d),—

1°. To obtain the term in rm, we may at once write D=1, =0, the expression is
thus reduced to

(a+1)(6+1)(c+1)(d+1){[rm—ec]'+[rm—ae—1]a},
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and the factor in { } being =rm[rm—e—17, the coefficient of rm is

(a4+1)(0+1)(e+1)(d+1)[ —a—1T,
= — (@+1)B+1) e+ 1)(d+1) . (a+1)(at2)(e+3).

2°, To obtain the term in A, writing rm=0, z=0, and observing that
[D]'=A+1, [DP=(A+1)A, [DP=(A+4+1)A(A-1), [DI*=(A+1)A(A—-1)(A=2),
&ec. give the terms A, A, —A, +2A, —6A, &c. respectively, the term in A is

(@+1)@+De+1)d+1) [ [—a—1a. 1A

which is

< H[—e—=278. 1
+[—a—38]y.—1
-+ . 2|

=@+ DO+ [ (a1t 2)a+3) ] A
[+68 @roEs) |
+ 7 (2+3) J
(4229
3°. For the term in x, writing »m=0, D=1, and observing that [z]', [=]}, [=]°, [#]*
give respectively the terms z, —z#, 2%, —6%, this is
=[ —=3d (a+1)@+4+1)(c+1){[—a—1P+[—a—2T }. 1 7,
+2cd (a+1)(0—1) {[—e—2P4[—e—3]"}. -1
—3bed (a—1) {{—e—3]+ . 2
4+ abed . —06

where the terms in { } are
—(e+1—o)(@+2)(2+3), (242—¢")(x+3) and — (2 +3—a"),
—(d+1)(e+2)(e+43), (¢+d+2)(x+3) and —(b+c+d+3)

respectively: whence the whole expression is

= 2d (e+1)0+1)(c+1)(d+1). (e+2)(x+3) =,
— Zed (¢c+d+2)(a+1)(0+1). (x+3)
+23bcd (b+c+d+3)(a+1)
— 6abed

that is,

the expression multiplying («+2)(«+3) is
(@+1)(0+1)(c+1)(d+1)Zd=(a+1)b+1)(c+1)(d+1)e;

and we have moreover

(a4 1)+ 1)(e+1)(d+1)=(1-+atB+y+3);
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the other lines are of course expressible in terms of (e, 3, y, 3), but as the law of their
formation would then be hidden, I abstain from completing the reduction.

82. The series of formule is
le] = (a+1)m
+(a+1)eA
— ax,
e, b]=—(a+1)(0+41)(x41) ..rm
—(a+1)04+1) [ a(w—l—l)}A
—_ |
+ { Eb(a-l-l)(b—l—l)lz,
— ab g

where a=a+b, B=ab; and coeff. of = expressed in terms of o, 3 is=ua(l+a+4B)—p0.
la, b, ¢]= (a+1)(041)(c+1)(e+1)(x+2) ..rm

F(@+104+1)(e+1)| elet1)(e+2) lA,
- e
—_ v |

—

+Sbe(bFe+2)(a+1)

+ {—2 o(@+1)0+1)(c+1)(@+2) Yz
—2 abe

where e=a4-b4-¢, B=ab-+ac+bc, y=abc; and the coefficient of z expressed in terms
of @, B, vy is =—o*—e?B—a’y—3a’—af3— 2a+2B41.
(@, b, ¢, d]=—(a+41)(041)(c+1)(d+1) (2 +1)(z+2)(x43) . Tm
—(a+1)(04+1)(c+1)(@+1) [ a(et1)(z+2)(2+3)] A
— B (Dt
- («+3) |
| —20

o+ S dat)0+1) (e 1) (4 1) (et 2) (e t3)
— 3 cd(c4d42) (a+1)(041), (2+3)

| +23 dod(d+e+a-+3)a+1)
| —6 abed J

where a==a-+b+c+d, . . =abcd.
MDCCCLXVIIL. s
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[a, b, ¢, d, e]= (a+1)(0+1)(e+1)(d+1)(e+1)(a41)(a4-2)(24-3)(244) rm

+(@a+1)0+1)(c+1)(d+1)(e+1)(  efw+1)(e+2)(@+3)(a+4)) A
- B (e+2)(e+3)(+-4)
-7 (e+3)(e+4)
—20 (ec+4)
— B¢
+(—= Se  (a+D)B+1)(cH1)@d+1)e+1) (a4+2)(z+3)(x+4)) =,
+ 3de (d+e+2)(a+1)0+1)(c+1) (4 3)(a—+4)
—23¢de (c+d+e+3)(a+1)(041) (e+4)
+63bode(b+c+ d+e+4)(a+1)
—24abede

where e=a+b+c+d+e, B=&ec., ... c=abcde.
83. The complete functions (a), (@, d), (@, b, ¢), &c. may be expressed by means of
the linear terms [a], [@, 0], [@, b, ¢], &c. as follows, viz. we have

(a) = [a]
(,0) = [a]?]
+ [a, b],

(@ 6,0) = [a]ft]le]
+ [a](b, c]+[]le, e]+c[a, §]
+ [, b, c],
(a,,¢, )= [a][t]le]ld]
+=[a](b]e, d]
+=[a, b][¢, d]
+2[a](b, ¢, d]
+ [, b, ¢, d],
and so on: this is easily verified for (, ), and without much difficulty for (a, &, ¢), but
in the succeeding cases the actual verification would be very laborious.
84. The theoretical foundation is as follows. Writing for greater distinctness (), in
place of (@), we have (),, to denote the number of the curves C" which have with a given
curve U™ a contact of the order e, and which besides pass through 3r(r+43)—a points.

Let the curve U™ be the aggregate of two curves of the orders m, m' respectively, or say
let the curve U™ be the two curves m, m/, then we have

(a)m:!-m’:(a)m'l'(a)m',

a functional equation, the solution of which is

(@)n=[a]n,
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where [@],, is a linear function of n, m, #, or, what is the same thing, of m, A, z. 1
assume for the moment that when the coefficients are determined [@],, would be found
to have the value =[a]. ‘

Similarly, if (a, 8),, denote the number of the curves C" which have with the given
curve U™ contacts of the orders ¢ and & respectively, and which besides pass through
47(r+3)—a—> points, then if the given curve break up into the curves m, m/, then we
have

(@ B = (@5 B)n—(a, B)os={(@)n(O)} +{(@)m(B)n}»
where {(@),(0)u} is the number of the curves " which have with m a contact of the
order ¢ and with 7' a contact of the order 5, and which pass through the 4r(r+48)—a—?
points; and the like for {(«),/(0),}. Then, not universally, but for values of ¢ and &
which are not too great, the order of the aggregate condition is equal to the product
of the orders of the component conditions (anté, No. 12), that is, we have

{ (a>m (b)m'} = (a)m . (b)m' = [a]m [b]mla
{(a’)m’(b)m = (d)m, . (b)m :[a:lml[b]m,

and thence the functional equation

(a) b)m+m’—(a3 6)m_(a7 b)ml=[a]m[b]ml_l‘[a]ml[b]m'
But [«],, &c. being linear functions of m, A, x, we have

[a]mﬂn/ = [a]m-l‘ [“]m'a [b:]m+ml = [b]m + [b]mh

and thence a particular solution of the equation is at once seen to be [a],[b],; the
general solution is therefore
(@ B)n=[a]u[0]n+[a, O)us

where [a, b],, is an arbitrary linear function of m, A, x. Hence, assuming for the pre-
sent that if determined its value would be found to be =[a, 0], we have the required
formula (a, b)=[a][0]+[a, 0].

The investigation of the expression for (e, b, ¢), dependsin like manner on the
assumption that we have

{(@ul by )} =()y - (b5 =[] [OJmJua=+[0; ]}
and so in the succeeding cases; and we thus, within the limits in which these assumptions
are correct, obtain the series of formule for (@, 8), (4, b, ¢). ... :
85. It is to be observed in the investigation of (a, 0) that if a=6, the two terms
(@]u[8]w and [@],,[b],. become equal, and the equal value must be taken not twice but
only once, that is, the functional equation is '

(@ @i — (@5 @)= (05 Qw=[]n[¢]m;

and the solution, writing 3{a, &],, for the arbitrary linear function, is’

(@ @)n=3[alnl@]n+3[a) a]n |
in which solution it would appear, by the determination of the arbitrary function, that
(@, @] has the value obtained from [a, ] by writing therein é=a. Writing the equa-
tion in the form '

(a, &) =3{a][a)+1[a, @),
s 2
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and comparing with the equation for (a, ), we see that [a, 8] is not to be considered as

- acquiring any divisor when 5 is put =a, but that the divisor is introduced as a divisor
of the whole right-hand side of the equation in virtue of the remark as to the divisor
of the functions (g, b), (@, b, ¢). .. in the case of any equalities between the numbers
(a, b, ¢...). Thisis generally the case, and the foregoing expressions for [a, 4], [, 8, ¢],
&ec. are thus to be regarded as true without modification even in the case of any equa-
lities among the numbers a, b, c.

86. To complete according to the foregoing method the determination of the expres-
sions for (@), (@, 8), . ., we have to determine the linear functions [«], [@, 8], &c., which
are each of them of the form fmn-gAhz, where (f, g, k) are functions of + and of
a, b, &c.; and I observe that the determination can be effected if we know the values of
(@), (@, b), &c. in the cases of a unicursal curve without cusps and with a single cusp
respectively., Thus assume that in these two cases respectively we have

(@)=(a+1)(rm—a),
(a)=(a+1)(rm—a)—a.
Writing first A=—1, #=0, and secondly A=—1, z=1, we haw
(a+1)(rm—a)  =fm—y,
(a41)(rm—a)—a=fm—g-+h,

f=(e+1)r, g=(a+1)a, h=—
giving the foregoing value
[a]= (a+1)rm+(a—|—1)aA ax.
Similarly, for two contacts assume that we have in the two cases respectively
(a, b)=(a+1)(b+1)[rm—a—>]", |
(@, b)=(a+1)(0+1)rm—a—b)— {a(b+1)+b(a+1)} rm—a—b—17.
Starting here from the formula [a, §]=(a, 0)—[a][b]=fm+ gA+hx, and writing suc-
cessively A=—1, =0, and A=—1, =1, we have
(a+1)(0+1)rm—a—0bP—{(a+1)(rm—a)} {(0+1)(rm—0)} =fm—yg,
(a+1)(041)rm—a—b— {a(b+1)+b(a+1)} [rm—a—b—1]
— (@ 1)(m— )=} { o+ 1) (= B) =By =fin—g+ 1
the first of which, putting therein a+b=a, ab=3, is at once reduced to
(e4+1)(o+1){rm(—a—1)+a(a+1)—B}=fm—y,
whence f=—(a+1)¢+1)(e+1)r, g=—(a+1)(64+1)(z(z+1)—B). And taking the
difference of the two equations, we have ‘
—{a(b+1)+b(e+1)}(rm—a—b—1)
+a(b+1)(rm—>b)+b(a+1)(rm—a)—ab=h,
that is A=(a+-1)(54-1)(a-+b)—ab; whence [a, &] has the value above assigned to it.
87. The actual calculation of [, 4, ¢] would be laborious, and that of the subsequent

whence
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terms still more so; but it is clear that the principle applies, and that the foregoing
values, assuming them to be correct, would be obtained if only we know, for a unicursal
curve without cusps, that

(@, b, ¢, . )=(a+1)B+1)(c+1) . .. [rm—(a+b+c,. )]
- (¢ the number of contacts @, b, ¢, . . .), and for a unicursal curve with a single cusp,
that
(@b, 0,. )= (a4+1)(0+1)(c+1)...[rm—(a+b+c...) T
—2a(04+1)(¢c+1) ... [rm—(a+b+tc. . ..)-—1]"‘?

viz. that the diminution of @, §, ¢, . . .) occasioned by the single cusp is

- =[rm—(a+tb+c, .. )=11""Z{a(d+1)(c+1) .. .}.

88. Consider a unicursal curve U™, and a curve C" having therewith ¢ contacts of the
orders @, b, ¢, . . . respectively. The coordinates (#, 9, 2) of any point of the unicursal
curve are given as functions of the order m of a variable parameter 4; and substituting
these values in the equation of the curve C’, we have an equation of the degree rm in 4,
but containing the coefficients of C” linearly; this equation gives of course the values of
8 which correspond to the 7m intersections of the two curves. Hence in order that the
curve C" may have the prescribed contacts with U™, the equation of the degree 7m in 8
must have ¢ systems of equal roots, viz. a system of @ equal roots, another system of &
equal roots, &c.: this implies between the coefficients of the equation an (¢ +d+c, . . .)-
fold relation, which may be shown to be of the order (¢+1)®+1)(c+1)....
[rm—(a+b+c, . ..)]; and since the coefficients in question are linear in regard to the
coefficients in the equation of the curve (', the order of the relation between the last-
mentioned coefficients has the same value; that is, the number of the curves C" which
have the prescribed contacts with the unicursal curve U™ and besides pass through the
requisite number of given points, is=(a+1)(¢+1)(¢+1)... . [rm—(a+b+c, .. .)].

89. The reduction in the case of a cusp appears to be caused as follows :—Consider on
the curve U™ @ points indefinitely near to the cusp, and let the condition of the curve
C having the contact of the a-th order be replaced by the condition of passing through
the @ points; that is, consider the curves C” which have with the curve U™ (¢—1) contacts
of the orders , ¢, . . . respectively, which pass through the @ points on the curve U™ in
the neighbourhood of the cusp, and which also pass through the requisite number of
arbitrary points. The number of these curvesis=(b+1)(¢c+1)...[rm—a—(b+c+..) ]!
(the term rm—a instead of 7m, on account of the given @ points on the curve: compare
herewith DE JoNquiiires’ formula containing 7m—p). Each of these curves, in that it
passes through e points in the heighbourhood of the cusp, will ¢pso facto pass through
a-+1 points (viz. a curve which simply passes through the cusp of a cuspidal curve meets
the cuspidal curve there in two points, a curve which touches the cuspidal tangent meets
the curve in three points, &c.), and be consequently, in an improper sense, a curve having a
contact of the a-th order with the given curve U”. I assume that it counts as such curve
a times, and this being so, we have, on account of the curves in question, a reduction
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91. In the case of the conic, (1), (2), &c. are the expressions denoted in the former
part of this Memoir by (1 ::), (2 .-.), &c., the number of points being in each case such
as to make in all five conditions ; calculating these functions by means of the formule
(¢)=[a], &c., the comparison of the resulting values with the values previously obtained
will show & posterior: the limits within which the formulee are applicable; where they
cease to be applicable I find the difference, and annex it as a correction to the formula
value: I have in some cases given what seems to be the proper theoretical form of this
difference. 'We have

(1:2) = Ymtn;
@.7) = a;
(31) =— 4m—Sn+3e;
(4-)  =—10m—8n+6a;
) =—18m—15n+10a—[—3m+e] (=—[]);
21,1.) = (2m4n) -
— dm—n—3u;
1,2 = (m+n)

+12m+12n—140 ;

13-) = (2m+n)(—4m—3n+3x)
+56m—-+49n—389% ;

1, 4) = (2m~+n)(—10m—8n-+6e)
+140m-+122n— 84w .
—[(m—38)(—12m—6n+6a)] (=—[(m—3)(4+2x)]);
2(2,2-) = o
+54m-4-48n—40x ;

2, 3) = a(—4m—3n+3z)
+144m+4126n— 900
—[24m—+6n+(n—12)] (=—[6r+4(n—3)x]);

6(1,1,1:) = (2m+n)
+3(2m—4-n)( —4m—n—3x)
—32m—58n+T78w
—[4m(m—1)(m—2)];
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2(2,1,1-) = (2m+n)e
+2(2m~+n)(12m~+12n—14w)+ o —4m—n—3e)
—336m— 336n-+288¢
—[2e(m—2)(m—3)] (=—[6n(m—2)(m—3)422(m—2)(m—3)];

2(3,1,1) = (2m+n)(—4m—3n+3e)
+2(2m~+n)(56m~+49n—39x)
+(—4m—n—3a)(—4m—3n-+3a)
—1184m—1094n+ 786
—[ —13m*—8mn 4 4mn>+131m>+ 92mn — 8n* — 316m—226n—l .

b

+a(9m*—87Tm— 3n-+204) ]
222 1) = (2mtn) (==[ 3 +10m—38)7)
+20(12m+12n—14z) ' #(3m?—19m+30)
+(2m4-n)(54m+ 480 — 40c) 4 (6m?—41m+69)
—1188m—1110n— 8200, | +#(8m —32)

~+o(—40m+-166) + 6(m—4)(n —3)
L+’ (m—4) - +18(m—4)r
|+ (m—3)(4+2x)

—~l'60m2—|—42mn—-252m—174nj{:(—-[_ (m—4)(x"—z) T);

24(1,1,1,1-)=  (2m+n)*
 6(2m4n)(—4m—n—3a)
+3(—4m—n—3u)’
~+4(2m~-n)(—32m—58n 4 T78x)
+2208m+2610n— 2358
—[ ldm(m—1)(m—2)(m—3)
l:+16n (m+2)(m—2)(m— 3)}
— 36 (m—2)(m— 8)
(=~ [(m—2)(m— 3)(14m*+16mn—14m —76n— 86x)]);

6(2,1,1,1) = (2m+n)a
+3(2m+n)* (12m—+412n—14x)
+ 3(2m—+n)e — 4m—n— 3a)
+3(2m~4n) (—3836m—2336n4288w)
+ o —32m—58n+ 78x)
+3(—4m—n—3a)(12m+12n—14e)
~+10656m-4-106562— 8016
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- 108m°+108m*n—1116m>*—1116mn-+2736m+2736n
+w(7m’+6m’n—147m“’—30mn+1040m_+24n——2256)
+aX(—9m +36),

where the correction is
=—(m—4){ 108m?+4108mn— 684m—684n
+o(Tm*—119m+564 + 6n(m—1))
— o?
=—(m—4){ 23(21n--36) )
+27(18m—126) l
+ (T + 6mn—65m—130+165)— 9(x*—x) |
+ +(+16n—96) |
120 1,1,1,1, )= (2m—+n)
+10(2m~+n)*(—4m—n—3a)
+10(2m +n)(— 32m— 58n+ T8¢)
+10(—4m—n—3e)(—32m—>58n-+-78x)
+ 5(2m—+n)(2208m-+2610n—2358x)
+15(2m +n)( — dm—n—3e)?
—102912m— 1120567+ 867604
- [ 3lm*+  TOm*n+ 40m°n® )
—  310m*— 460m*n—120m?*n?
—  235m*— 1030m*n—400 mn?
+10690m*+4-16060m n4 960 n?
+a{— 210m*—180mn
+ 2970m*+900mn
—16630m —T20n
| +28440 J
| +2*(136m—540), )

where the correction is
=—(m—4) ( 31m*—186m*—979m*4+-6774m

+n(70m*—180m*—1750m+ 9060)

+407*(m+8)(m—2)

+o /—210m?4+2130m— 7110

(— 180n(m—1) )
| +a?.135, ]
MDCCCLXVIIL T
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which is
= —(m—4) [ 31(20+ 3%)*+110(23+ 3z )(2~+ 3+ ) ]
+ (B2 +1142m 43174 ) z— )
+(—14m—638n—1524 (20 + 3%)
+(—390m +110n+4272)(27+84)
|+ (—210m*—180mn+2130m+ 9900 —T7110)x 4135~ |

but I have not sought to further reduce this expression, not knowing the proper form
in which to present it.

92. The question which ought now to be eonsidered is to determine the corrections or
supplements which should be applied to the foregoing expressions (a), (@, 8), &c., or to
their equivalents [«], [@][6]+[@, 0], &c. in order to obtain formule for the cases beyond
the limits within which the present formulee are applicable; but this I am not in a
position to enter upon. If the extended formule were obtained, it would of course be
an interesting verification or application of them to deduce from them the complete
series of expressions (1::), (2.-.) ... (1,1,1,1,1) for the number of the conics which
satisfy given conditions of contact with a given curve, and besides pass through the
requisite number of given points. It will be recollected that throughout these last
investigations, I have put DE JoNQUIERES’ p=0; that is, I have not considered the case
of the curves C" which (among the conditions satisfied by them) have with the curve U™
contacts of given orders at given points of the curve; it is probable that the general
formulee containing the number p admit of extensions and transformations analogous
to the formul® in which p is put=0, but this is a question which I have not con-
sidered.

93. The set of equations (@¢)=[«], (a, b)=[a][0]+[a, &], &c., considered irrespectively
of the meaning of the symbols contained therein, gives rise to an analytical question
which is considered in Annex No. 7.

The question of the conics satisfying given conditions of contact is considered from
a different point of view in my Second Memoir above referred to.

Annex No. 1 (referred to in the notice of DE JoNQUIERES' memoir of 1861).—On the
Jorm of the equation of the curves of a series of given index.

To obtain the general form of the equation of the curves C* of a series of the index
N, it is to be observed that the equation of any such curve is always included in an
equation of the order # in the coordinates, containing linearly and homogeneously
certain parameters @, 6, ¢ . .; this is universally the case, as we may, if we please, take
the parameters (@, b, ¢ . .) to be the coefficients of the general equation of the order n;
but it is convenient to make use of any linear relations between these coefficients so
as to reduce as far as possible the number of the parameters. Assume that the
number of the parameters is =w+1, then in order that the curves should form a
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series (that is, satisfy 3n(n+438)—1 conditions), we must have a (»#—1)fold relation
between the parameters, or, what is the same thing, taking the parameters to be the
coordinates of a point in w-dimensional space, say the parametric point, the point in
question must be situate on a (w—1)fold locus. Moreover, the condition that the curve
shall pass through a given point establishes between the parameters a linear relation
(viz. that expressed by the original equation of the curve regarding the coordinates
therein as belbnging to the given point, and therefore as constants); that is, when the
curve passes through a given point, the corresponding positions of the parametric point
are given as the intersections of the (#—1)fold locus by an omal onefold locus; the
number of the curves is therefore equal to the number of these intersections, that is, to
the order of the (w—1)fold locus; or the index of the series being assumed to be =N,
the order of the (w—1)fold locus must be also =N. That is, the general form of the
equation of the curves C* which form a series of the index N, is that of an equation of
the order m containing linearly and homogeneously the w+1 coordinates of a certain
(w—1)fold locus of the order N. It is only in a particular case, viz. that in which the
(#—1)fold locus is unicursal, that the coordinates of a point of this locus can be ex-
pressed as rational and integral functions of the order N of a variable parameter 4; and
consequently only in this same case that the equation of the curves C* of the series of
the index N can be expressed by an equation (%Y, y, 2)"=0, or (Y=, y, 1)"=0,
rational and integral of the degree N in regard to a variable parameter 4.

If in the general case we regard the coordinates of the parametric point as irrational
functions of a variable parameter 4, then rationalising in regard to 4, we obtain an equa-
tion rational of the order N in 4, but the order in the coordinates instead of being =n,
is equal to a multiple of », say gn. Such an equation represents not a single curve but
g distinct curves C", and it is to be observed that if we determine the parameter by sub-
stituting therein for the coordinates their values at a given point, then to each of the N
values of the parameter there corresponds a system of ¢ curves, only one of which
passes through the given point, the other g—1 curves are curves not passing through
the given point, and having no proper connexion with the curves which satisfy this con-
dition.

Returning to the proper representation of the series by means of an equation con-
taining the coordinates of the parametric point, say an equation (%Y, », 1)"=0, in-
volving the two coordinates (&, ), it is to be noticed that forming the derived equation
and eliminating the coordinates of the parametric point, we obtain an equation rational
in the coordinates (, y), and also rational of the degree N in the differential coefficient

dy . . . . .

d—Z; in fact since the number of curves through any given point (&, z,) is =N, the
differential equation must give this number of directions of passage from the point
(2, 9,) to a consecutive point, that is, it must give this number of values of Z-Z,, and must

consequently be of the order N in this quantity.
T 2
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Conversely, if a given differential equation rational in x, y, Y and of the degree N in

the last-mentioned quantlty oo admit of an algebraical general integral, the curves re-

presented by this integral equation may be taken to be irreducible curves, and this being
so they will be curves of a certain order » forming a series of the index N'; whence the
general integral (assumed to be algebraical) is given by an equation of the above-men-
tioned form, viz. an equation rational of a certain order » in the coordinates, and con-
taining linearly and homogeneously the #41 coordinates of a variable parametric point
situate on an (w—1)fold locus. The integral equation expressed in the more usual form
of an equation rational of the order N in regard to the parameter or constant of inte-
gration, will be in regard to the coordinates of an order equal to a multiple of n, say
=g¢n, and for any given value of the parameter will represent not a single curve C”, but
a system of ¢ such curves: the first-mentioned form is, it is clear, the one to be pre-
ferred.

Annex No. 2 (veferred to, No. 17).—On the line-pairs which pass through three gwen
points and touch a given conic.

.. Taking the given points to be the angles of the triangle formed by the lines (2=0,
y=0, 2=0), we have to find (f, ¢, ) such that the conic (0, 0, 0, £, g, AY =, y, 2)*=0,
or, what is the same thing, fyz+gza+hzy=0, shall reduce itself to a line-pair, and shall
touch a given conic (1, 1,1, A, @, v}, ¢, 2)>=0. The condition for a line-pair is that
one of the quantities f, g, A shall vanish, viz. it is fgh=0; the condition for the contact
of the two conics is found in the usual manner by equating to zero the discriminant of
the function 1— (A+4f )*— (w09 > — (v 4 0h)*+ 2(n 4 0F N+ 0g) (v + 0k) = (@, b, ¢, A4, 1)3
suppose ; the values of @, b, ¢, d being

a= 2fqh,
b=—3(f*+9'+ 1 —2rgh—2uhf—2:fy),
e= 3((w—n)f +(n—wg+Ap—r)k ),
d=  1—N—p*—»+2npm.

Hence considering (f, ¢, /) as the coordinates of the parametric point, we have the dis-
criminant locus ¢=0, and the contact-locus

a’d*+4ac* + 4b*d — 3b*c* — 6abed =0,

and at the intersection of the two loci, a=0, *(4bd— 3¢*)=0, equations breaking up
into the system (=0, 6=0) twice, and the system a=0, 46d—3¢*=0; the former of
these is .

Joh=0, f*4g*+h*—20gh—2uhf—2vfg=0,
which expresses that the intersection of the two lines of the line-pair intersect on the
given conic; in fact the system is satisfied by f=0, g*+h*—2rgh=0, giving a line-pair
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2(hy-+92)=0, the two lines whereof intersect on the conic (1, 1,1, A, g, vX&, 9, 2’=0;
and similarly, if g=0, then A*+f2—2uhf=0, or if A=0, then f*+4¢*—2fg=0. As
noticed above this system occurs twice.

The second system is

Jgh=0, (f* +g*+ 12— 2hgh — 2uhf — 20fg)(1 — N —pu— '+ 20yu)
(v —1)f+ (A —p)g+(pr—v)h) =0,

or, as the second equation may also be written,

FoL—p) (1) (L)1) 4 T —27)(L e
- 2gH(1 %)) + 2L — ) 0h— ) 4 21— ) hgamr) =0,

which expresses that a line of the line-pair touches the conic; in fact the system is
satisfied by f=0, ¢*(1—»*)+ A (1—p*)+2¢9k(ww—nr)=0, viz. we have here the line-pair
2(hy+g2)=0, in which the line iy +- gz=0 touches the conic (1,1, 1,7, u, vX2,7,2)*=0;
and the like if ¢=0, or if A=0. This system it has been seen occurs only once.

Annex No. 3 (referred to, No. 22).—On the conics which pass through two given points
and touch a given conic.

, Consider the conics which pass through two given points and touch a given conic.
We may take Z=0 as the equation of the line through the two given points, and then
taking the pole of this line in regard to the given conic and joining it with the two
given points respectively, the equations of the joining lines may be taken to be X =0
and Y=0 respectively. This being so, we have for the given points (X=0, Z=0) and
(Y=0, Z=0) respectively, and for the given conic

aX?+b0Y*+2hXY 4 ¢Z7*=0;

and since the required conic is to pass through the two given points its equation will be
of the form
wX?+20YZ+2yZX +22XY =0,

where (, 9, 2, w) are variable parameters which must satisfy a single condition in order
that the last-mentioned conic may touch the given conic. The condition is at once seen
to be that obtaiied by making the equation
(a-+2rw)be
—(a+rw)(h+2rz)?
;—b}.’g/f‘"
—\’2?

+20%ay(h+2z) =0,
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considered as a cubic equation in A, have a pair of equal roots; or if we write

A=3c(ad—P?),
B =(ab—I*)Yw—2chz,
C=—aa"—by’—c2*+2h(2y —zw),
D=32(2zy—w2),

then the required condition is
A*D*+4AC*+4B°D—6ABCD—3B*C*=0.

Hence the conic
wX?+20YZ+2yZX +22XY =0

satisfies the prescribed conditions, if only the parameters (z, 9, 2, w) satisfy the last-
mentioned equation, that is, if (, 7, 2, w) are the coordinates of a point on the sextic
surface represented by this equation.

The surface has upon it a cuspidal curve the equations whereof are

A, B, C
B, C, D

-

this may be considered as the intersection of the quadric surface AC—DB’=0 and the
cubic surface AD—BC=0; and the cuspidal curve is consequently a sextic.
The surface has also a nodal curve made up of two conics; to prove this I write for

shortness k=h—/"ab, k;=k+\/ ab; the values of A, B, C, D then are

A=— 36‘7&'[6,,

B=—Fkkw—2chz,
C=—aa®—by’—c2’+2h(vy —2w),
D= 3z(2xy—ziv).

And it is in the first place to be shown that the surface contains the conic
x:y:ziw=0/0:0/a:1: —/£92+76;’
where 4 is a variable parameter. Substituting these values, we have
A=—3ckk,
B =k —c(8h 4~/ ab),
¢

C =21k, —7(3h—~/ad),

c
D=3</c16”—z> :
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and hence

AD—BC=—2k<Ic7c,62+2° ‘k/‘”" :

AC—B — (/c/fﬁ’-{—% 4 %>f

BD-C =— (k#+25),

values which satisfy identically the equation of the surface written under the form
(AD—BC);—4(AC—B*)(BD—C*)=0.

Moreover, proceeding to form the derived equation, and to substitute therein the fore-

going values of (2, ¥, 2, w), we have

0A:0B:3C:0D=0:%%:2k: 3,
and then the derived equation is
(AD—BO)( 3A—2k B—#*C)
—2(AC—DB* )( 3B—4k C+#°D)
—2(BD —C* )(2kA—2/*B )=0,

that is,
—k( 3A—-2kB -7 C)
+ & 3B—4%C+#°D)
_ + (2kA—-2kB),
or finally

— k(A —3Bk+ 3k C—kD)=0,
which is satisfied by the foregoing values of A, B, C, D; hence the conic is a nodal curve
on the sextic; and by merely changing the sign of one of the radicals »/a, /6 (and
therefore interchanging £, £,) we obtain another conic which is also a nodal curve on
the surface, that is, we have as nodal curves the two conics

(x:g/:z:w_—:@\/b: a:1: —kb +7cc-, and

]\x:y:z:wzé\/Z: —0/a:1: —lc,@z—l—;%-
It is to be remarked that each of the nodal conics meets the cuspidal curve in two
points, viz. writing for shortness @ = }—C'\/ »—Qck—:/a—b , G),:—,%; \/ Qc;‘ff;i;, for the intersec-
tions of the first conic we have
riy:z:w=0./a: G)\/Z:I:ki1 and =—0 /a: _6\/5:1:1%’
and for the intersections with the second conic
z:y:2:w=0./a: —0\/b: lzki and =—0On/a: OWb: 1:—%-

The condition of passing through any arbitrary point establishes a linear relation be-
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tween the parameters (v, 9, 2z, w). Hence, if the conic in addition to the prescribed con-
ditions passes through two other given points, the point (, 7, 2, w)is given as the
intersection of a line with the sextic surface; the number of intersections is =6. If
(%, y, 2, w) is situate on the cuspidal curve, then the conic instead of simply touching
the given conic will have with it a contact of the second order, and if we besides sup-
pose that the conic passes through a given point, then the point (z, ¥, 2, w) is given as
the intersection of the cuspidal curve with a plane; the number is =6. Similarly, if
the conic has two contacts with the given conic, and besides passes through a given point,
then the point (2, y, 2, w) is given as the intersection of the nodal curve by a plane;
the number is=4. Finally (observing that in the case in question of the contacts of a
conic with a conic we cannot have three simple contacts, or a simple contact and one of
the second order), a point of intersection of the nodal and cuspidal curves answers to a
contact of the third order; and the number is==4. That is, the theory of the sextic
surface leads to the following values (agreeing with those obtained from the formule
by writing therein m=n=2, «=6), viz.

(1::) =6, = 2m+n,

1, 1.)=4, = 2m42mn+in*—2m—in—3«,

(2.) =6, = |a

(3:) =4, =—4m—3n+3e.
I remark that the section by an arbitrary plane is a sextic curve having 6 cusps and 4
nodes; it is therefore a unicursal sextic; thissuggests the theorem that the sextic surface
is also wmicursal, viz. that the coordinates are expressible rationally in terms of two
parameters ; I have found that this is in fact the case. In doing this there is no loss
of generality in supposing that e=b=c¢=1; and assuming that this is so, and putting
also —14+h=Fk, 14+h=F,, and therefore 2h=Fk-+%,, we have

A=—3kk,
B=— kkw—(k+F)z,
C=— @—y’'—2+(k+k)(2y—2w),
D= 32(2zy—zw).
The equation of the sextic surface being, as before,
A’D*4+4AC+4B°D—3B*C*— 6ABCD=0,

I say that this equation is satisfied on writing therein
x—l—y:\/_;— (1—#a)sin @,
1
r—y= \/% (14% «) coso,
z =1,

w = (2«.—%) cos’@ + (20&—%) sin’@,
. 1
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where («x, ¢) are arbitrary. In fact these values give
FA=—Lk, cos’¢—kk, sin®g@,
B=—k2ak,+1) cos’¢—Fk, (2uk-+1)sin*g,
C=—k( ak,+2)cos’¢—Fke( ak+2)sin’*g,
D=—Fku® cos* @ — ko sin?@,

Qo

whence w being arbitrary, we have
3(A, B, C, DY, 1)
=—[k cos’0 (kyw+1)+k, sin*¢(ko+1))(w+«)?,
viz. the equation (A, B, C, DY, 1)’=0, considered as a cubic equation in w, has the
twofold root = —ua, that is, we have the above relation between (A, B, C,D). Whence
.pe . 2A 1—a2 . . .
also writing sin P=17w 08 P=1 5w the equation of the surface is satisfied by the

values

a4y o—y:z: 'wz\/._]% (1—k,a)2x(1+;\2)

: Uk (1=

: (1422

(20— ) (1 =22+ (2u—7- ) o

i 2e—7 (1—2*P4 (20— 7 A
or the coordinates are expressed rationally in terms of o, A.

Annex No. 4 (referred to, Nos. 22 and 71).—On the Conics which touch a cuspidal cubic.

In the cuspidal cubic, if #=0 be the equation of the tangent at the cusp, y=0 that
of the line joining the cusp with the inflexion, and z=0 that of the tangent at the cusp,
then the equation of the curve is y°=a°%; the coordinates of a point on the cubic are
given by & : ¢ : 2=1: 0 : §°, where 8 is a variable parameter; and we have, at the cusp
§=o0, at the inflexion §=0. In the cubic, m=n=3, «(=3n-+x)=10.

Considering now the conic »

(@, b, o, f, ¢, BY 2, 3y, 2)*=0,
this meets the cubic in the 6 points the parameters of which are determined by the

equation
(a, b, ¢, f, 9, kX1, 6, 6)*=0,
or, what is the same thing,
(¢, 0, 2f, 29, b, 2h, a8, 1)°=0.
The discriminant of this sextic function contains the factor ¢, hence equating the
residual factor to zero, we obtain the equation of the contact-locus in the form

(e, 1, g5 by by a)*=0.
MDCCCLXYVIII. U
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It follows that the number of the conics (1::) is =9, which agrees with the general
value (1::)=2m--n. If the conic pass through the cusp we have ¢=0, and the equation
in 6 is reduced to a quartic; it is convenient to alter the letters in such wise that the
quartic equation may be obtained in the standard form (e, 4, ¢, d, )(6,1)*=0: viz. this
will be the case if the equation of the conic is taken to be
(e, 6¢, 0, La, 20, 2dY 2, y, z)*=0,
and we then obtain the equation of the contact-locus in the form
(ae—4bd+3¢*)*— 27 (ace+2bcd— ad®— be— ¢*)*=0,
which is a onefold locus of the order 6. It follows that we have
(1z1,1.-.)=6, agreeing with (11,1 .".)=n+2m—3.
The condition in order that the conic may touch a given line is given by an equation
of the form . k ’ _
(xX e, ab, 1?, 2ce—3d*, ae—8bd, ad—12bc)'=0,
which is a onefold locus of the order 2; it at once follows that we have
(1=l, 1,:/)=12, agreeing with (1z1, 1,:/)=2n4 4m—6.
It is a matter of some difficulty to show that we have
(11, 1, - //)=18, agreeing with (1z1, 1 - //)=4n-+4m—6;
but T proceed to effect this, first remarking that I do not attempt to prove the remaining
case

(121, 1///)=15, agreeing with (1x1, 1 ///)=4n-+2m—3.
Investigation of the value (1«1, 1-//)=18:
We have the sextic locus
(ae—4bd + 8¢*)*—27(ace +2bcd — ad® — bPe—c*)*=0,

and combined therewith two quadric loci,

(x X, ab, 0*, 2ce—3d°, ae—8id, ad—12bc)'=0,
(¥ Y e, ab, B, 2ce—3d*, ae—8bd, ad—12bc) =0,

which intersect in a threefold locus of the order 24 ; it is to be shown that this contains
as part of itself the quadric threefold locus (a=0, §=0, 2¢ce~ 3d>= 0) taken three times,
leaving a residual threefold locus of the order 24 —6,=18.

We may imagine the coordinates a, b, ¢, d, e expressed as linear functions of any four
coordinates, and so reduce the problem from a problem in 4-dimensional space to one in
ordinary 3-dimensional space. We have thus a sextic surface, and two quadric surfaces ;
the sextic is a developable surface or torse, having for one of its generating lines the
line a=0, $=0, and for the tangent plane along this line the plane ¢=0; the two
quadric surfaces meet in a quartic curve passing through the two points (a=0, =0,
3ce—2d’=0), which are points on the torse; it is to be shown that each of these points
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count three times among the intersections of the torse with the quartic curve, the
number of the remaining intersections being therefore 24—6, =18 ; and in order thereto
it is to be shown that each of the points in question (¢=0, 6=0, 3ce—2d*’=0) is situate
on the nodal line of the torse, and that the quartic curve touches there the sheet which
is not touched by the tangent plane ¢=0; for this being so the quartic curve touching
one sheet and simply meeting the other sheet meets the torse in three consecutive points,
or the two points of intersection each count three times.
The torse has the cuspidal line

S=ae—4bd+3¢*=0, T=ace+42bcd—ad*—b¢—c*=0,
and the nodal line :
6(ac—0%), 3(ad—bc), ae+20d— 3¢, 3(be—od), 6(ce—d)

a, b , c , d e

and the equations of the nodal line are satisfied by the values (¢=0, 6=0, 3ce—2d*=0)
of the coordinates of the points in question. To find the tangent planes at these points,
starting from the equation $*—27T?=0 of the torse, taking (A, B, C, D, E) as current
coordinates, and writing

0=A0,+Bo,+4+Co,4Do,+Eo,,
then the equation of the tangent plane is in the first instance given in the form
S$"0S—18T0T=0, which writing therein (¢=0, 6=0, 3ce—2d*=0) assumes, as it
should do, the form 0=0; the left-hand side is in fact found to be 9¢’(3ce—2d*)A.
Proceeding to the second derived equation, this is S?0°S428(05)*—18To*T'—18(0T)*=0,
or substituting the values of the several terms, the equation is
9¢'(AE—4BD+4-3C?)
+ 3c*(eA—4dB+6¢C)
+18¢*{e(AC—B*)+2d(BC—AD)+4¢(AE+42BD—3C*)}
— 9 {(ce—d)A+2cdB—3c°Cy=0;
the terms in BC, BD, C* vanish identically, that in B®is (48—36=)12¢’d*—18¢%,=
—6¢*(8ce—2d*)B?, which also vanishes; hence there remain only the terms divisible by A,
giving first the tangent plane A=0, and secondly the other tangent plane,
A(— 6c¢¢*+18cd’e—9d*)
+B(— 60c’de+36¢d?)
+C( 108c°¢—b4c*d?)
+D(— 36¢°d)
+E.27¢ , =0.

"Taking the equations of the quadric surfaces to be
( s ¥y 0,0, 7K U, ab, 3ce—2d*, ae—8bd, ad—125¢)=0,

(7\,9 P°I> V/, EI’ 5,’ Ht( 9 D 59 » )207
U 2
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the equations of the tangentb planes are

¢(3¢E+3¢C—4dD)~+o (¢A—8dB)++(dA—12¢B)=0,

¢( . o )+ s )=0,
in all which equations we have 8ce—2d*>=0; and if to satisfy this equation we write
c:d:e=2:303:3(, then the equations of the tangent planes become

B (AB—8B)+8(3CB*—4DB+2E)=0,
¢ (3CB*— 4DB+28)-H (¢ B-+7)(AB—8B)=0,
dC » B » )=0,
or the three tangent planes intersect in the line AB—8B=0, 3C3*—4DpB42E=0,

which completes the proof.
Reverting to the sextic locus,

(ae+4bd—3c*)—27(ace +2bed — ad*—be— ¢*)*=0,
considered as a locus in 4-dimensional space depending on the five coordinates («, b, ¢, d, e),
this has upon it the twofold locus
ae—4bd+3c*=0, ace+2bcd— ad®—b*e— =0,
say the cuspidal locus, of the order 6, and the twofold locus
6(ac—10%), 8(ad—bc), ae+2bd—3c*, 3(be—cd), 6(ce—d*)
o, b s c R d , €

—0,

say the nodal locus, of the order 4: there is also a threefold locus,
a, b, c, d :0,

b, ¢, d, e
say the supercuspidal locus, of the order 4. 'We thence at once infer

(121,2 :)=6, agreeing with (11, 2 :)=a—4,

(1#1,1,1:)=4, » (121,1, 1:)=2m*+2mn+3n*—8m—In+13—3e

(121, 8 :)=4, ,, » (121,88 :)=—4m—3n—5+3a;
but T have not investigated the application to the symbols with -/ or //.

If the conic, instead of simply passing through the cusp, touches the cuspidal tangent,
then in the equation (, 8, 0, f; ¢, ZY @, y, 2)?)=0 of the conic we have f=0, or, what is
the same thing, in the equation (e, 6¢, 0, 4a, 20, 2dY, y, 2)*=0 of the conic we have
@=0. The equation in 4 is thus reduced to 466°+ 6¢¢*+4dd+e=0. For the inde-
pendent discussion of this case it is convenient to alter the coefficients so that the
equation in 4 may be in the standard form (a, b, ¢, dY(4, 1)*=0, viz. we assume the equa-
tion of the conic to be (d, 30, 0, 0, 4a, 3c)«, y, 2)’=0. The equation of the contact-
locus then is

&*d? +4ac® +40*°d — 6abed — 30*c*=0,
viz. this is a developable surface, or torse, of the order 4, and we at once infer

(221, 1:)=4, agreeing with (2#1, 1:)=2m+n—5.
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I will show also that we have ,
(21, 1 - /)=6, agreeing with (2«1, 1 - /)=2m+ 2n—6,

and (221,1 //)=5, » (221,1 /))= m+2n—A4.

The condition that the conic may touch an arbitrary line ax-+ By +yz=0, is in fact
(0, —%a?, 3(4bd—3¢*), 3ac, —3ab, 0) e, B, y)’=0,

which, considering therein (a, &, ¢, d) as coordinates, is the equation of a quadric surface
passing through the conic a=0, 46d—3¢*=0; the quartic torse also passes through this
conic; hence the quadric surface and the torse intersect in this conic, which is of
the order 2, and in a residual curve of the order 6; and the number of the conics
(221, 1 - /) is equal to the order of this residual curve, that is, it is =6.

If the conic touch a second arbitrary line «'z+@'y+7'2=0, then we have in like

manner the quadric surface ‘
(Oa --;}jﬁ, %(4bd_302)9 %CZO, —'%abo OI“'s ﬁla 7,)2=0§

that is, we have the quartic torse and two quadric surfaces, each passing through the
conic a=0, 4bd—3¢*=0, and it is to be shown that the number of intersections not on
this conic is =5. The two quadric surfaces intersect in the conic and in a second
conic; this second conic meets the torse in 8 points, but 2 of these coincide with the
point =0, 5=0, ¢=0, which is one of the intersections of the two conics (the point ¢=0,
=0, ¢=0 is in fact a point on the cuspidal edge of the torse, and, the conic passing
through it, reckons for 2 intersections), and 1 of the 8 points coincides with the other of
the intersections of the two conics; there remain therefore 8—2—1, =5 intersections, or

we have (221, 1//)=5.

Annex No. 5 (referred to, Nos. 22 and 71).—On the Conics which have contact of the third
order with a given cuspidal cubic, and two contacts (double contact) with a given conic.

Let the equation of the cuspidal cubic be #%2—3*=0 (=0 tangent at cusp, z=0
tangent at inflexion, y=0 line joining cusp and inflexion; equation satisfied by

x:yz=1:9:6);
and let the equation of the given conic be

U=(a, b, o, f, 9, kY &, 9, 2)’)=0;
O=(a, b, ¢, f, g, kY1, 4, &)
=cf0+ 2f0* + 296°+ b6* + 2h8 +-c,

the equation of a conic having with the given cubic at a given point (1, 4, ¢°) contact of
the second order, and having double contact with the given conic, is

then writing

VU, &y, 2z | =0,
VO 1, ¢ ¢
WOy . 1, 3¢

o) . . 6
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viz, in the rational form this is
360°U — z, ¥y, z ’=0,
/0, 1, ¢, ¢
ey . 1, 3¢
/Oy . . 6/
and this will have at the point (1, 4, ) a contact of the third order if 4 be determined by
VO, 1, ¢ ¢ |=0,
WOy . 1, 3¢
WOy . . 60
ey . . 6
O(/0)'—(/0)'=0;
or developing and multiplying by ©%, this is
0{0'0" —{00'0" +106"} — (0’0" —400")=0,
or, what is the same thing,

viz. this is

O’(10"—0")
+00(—3200"'+10)
+02.300'=0;
and substituting for O its value, this is
(6218 4 290° - 06* 208 + a ) (45¢6* + 126 — D)
+ (674210 + 290° +-68° + 2h0 + @) (38° + 4f8° + 398 + b+ h)( — 42¢6° — 3278

—16¢6°—260-+ 1)
+ 86(308°+ 418°+ 390*+ 60+ h ) =0. .

The coefficients of the powers 16, 15, 14, 13 of § all vanish, so that this is in fact an
equation of the twelfth order (xY¢, 1)*=0; and putting, as usual,

(bo—f?, ca—g*, ab—1’, gh—af, hf —bg, fg—ch)=(A, B, C, F, G, H),
the equation is found to be

— 4¢A 67 -+ 72hA1 +45aB
+30cH 6" + 9B —20fC }94
—86¢B 1, — 220H + 104G
+16fA + 40aA) + BRF
—10¢G |, —130HL | +20aG
+40gA | + 109G } — 43C g
+200A + 40fF —12aF |
—-—GOfB}GB + 334B — 5KC 8
—90¢H +  2G }95 — aC =0,
—108<H
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‘where the form of the coefficients may be modified by means of the identical equations
(A, H, GYa, k, 9)=K,
(H,B, ¥ » )=0,
(Gs F, CI 3 )'—_Oa
(A, H, GY7, b, f)=0,
(H,B,FY{ , )=K
(G, ¥, CY , )=0
(A, H, GYy, f, ¢)=0,
(H, B, ¥Y , )=0,
(G, F,CY , )=K

ThG}“C iS conse U.Cl’ltl aQ COIliC answerinu to each value Of 6 iven b thlS e uati-on. Oor we
q y o *
have il’l a]l 12 conics.

In the case where the given conic breaks up into a pair of lines, or say,
(@, b, ¢, f, ¢, B @, y, 2)*=2(Ax+py+v2) (N -+ py+/'2),
then, writing for shortness |

w =y W —v, M ==X, Y, Z,
we have

(A, B, C, F, G, )=(X2, Y2, 7, YZ, ZX, XY).

Substituting these values, but retaining (@, 8, ¢, f, ¢, ) as standing for their values
a=2xN, &c., the equation in ¢ is found to contain the cubic factor 2X¢*—3Y¢*4-7Z,
where it is to be observed that this factor equated to zero determines the values of ¢
which correspond to the points of contact with the cuspidal cubic of the tangents from the
point (X, Y, Z), which is the intersection of the lines az + py4-12=0, and Ne+p'y+v2=0;
and omitting the cubic factor, the residual equation is found to be

(|2 | —120Y | —8fX | —20yX | —100X | 408X | —200X | +150Y | 4512 | 4az 0, 1)
! 19FY | 4 3gY | — 8bY | +17AY | + 4bZ ’

1 + 4o Z + g%

=0,

where the form of the coefficients may be modified by means of the identical equations
aX+1Y+gZ=0,
IX+0Y +fZ=0,
9X+fY+cZ=0.

The equation is of the 9th order, and there are consequently 9 conics.
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Annex No. 6 (veferred to, No. 48).—Containing, with the variation referred to in the
teat, ZEUTHEN'S forms for the characteristios of the conics which satisfy four conditions.

(1)( 2 )= n+2m,

( ~./)=2n+4m,
( :/)=4n+4m,
(- //))=4n+2m,
(/=204 m;

LDy —om( mt+ a—3)+ =,
/) =2m( m+2n—>5)+2,
(+/)) =20 (2m+ n—6)+23,
(//)) =2n(m+ n—3)+ ¥;

(LD 0y —1r9me 4 6min—nt — 30m2—18mn + 1302 + 84m— 420 4 (6m+ 30— 26)],

(-/) =¥ (m-+n)(—(m+n)—"T(m+n)+48) +4nn(3m+3n—18) +2(3m+ 3n—20)(3+7)
(/) =[—m’+6mn*+2n° +13m* — 18mn— 30n*— 42m -+ 84n +(8m - 6n—26)3] ;

GLL DOy =30 2(m—3)m— ) n—m—n)+(n—S3)(n—4&)mi —m—n)
+4(m*— 11m+28)r +2(n*—11n4-28)8
+ (4(n—4)(m—4)—1)(20+7) + 28>+ 7%},
(/) =8{ (m—3)(m—4)(n'—m—n) +2(n—238)n—4)(m*—m—n)
+2(m*—11m+28)r +4(n*—11n+28))
+(4(n—4)(m—4)—1)@+27) 48427} ;

(2)()= 3m+4,
(:/)=2(3m+1),
(+/)=2(3m+),
(/)= 3m+s;
% 1) () =3(@2mn4-n2 4 4m—10m) + @m+n—14)x,
(- ))=2(8m~+s)(m+n—12) +24(m+n),
(/) =3(m*+2mn—10m~+4n)+(m+2n—14) s
@ L= @mtn—T)6r+(n—3))
+((m—mn)(m~+n—>5)+7)(3m-+i— 36)
+12(m—n)(m+n—3),
()= (m+2n—T)(63+(m—3))
+((n—m)(m~+n—>5)+3)(3m++— 36)
+12(n—m)(m+n—3);
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(2, 2)( ©)=%(3m~+4)*—3(3m—+1+)— 97— 8,
(/ )=%0Bm44)—3(3m~+:)—8r—93;

(3)(: )= 6n—4m+3z= bm—3n+ 8,
(+/)=100—8m+ 62=10m—8n+ 64,
(/)= bn—3m+3x= 6m—4n+3i;

(4, 8)( < )= 2(—4m*+3mn+3n* +28m—382n)+3(2m+ n—13)x,
(/)= 2( 3m’+3mn—4m*—32m+28n)+3( m+2n—18);

(4)( : )=10n—10m—|—6z= 8m— 871,.'.6‘,
(/)= 8n— 8m+6z=10m—10n-06..

Annex No. 7 (referred to, No. 93).

In connexion with DE JonqQurires’ formula, I have been led to consider the following
question.
Given a set of equations:

a = a (vizb = b, c=e, &c.),

ab = ab  /viz. ac= ac &c., and the like in all the subsequent equations
-|—(11)a.b< +11)a.c, >’

abc = abe

+( 12)(@.bec+b . ac+c. ab)
+(111) @ . b, ¢,
abcd= abed
+( 13)(@. bed+ &e.)
+( 22)(ab. cd+ &c.)
+(112)(a. b . cd+ &c.)
+1111 @.b.¢.d,
and so on indefinitely (where the (- ) is used to denote multiplication, and ad, abe &e.,

and also ab, abc &c. are so many separate and distinct symbols not expressible in terms
of @, b, ¢ &c., a, b, ¢ &c.), then we have conversely a set of equations

¢« = a (viz.b =b, c=c&e.,

ab = ab (ViZ. ac= ac  &c., and the like in all the subsequent equations>
+[11]a.b +[11]a.c,

abe = abc

=+4[12 J(a.bc+b.ac+c. ab)

+[111]a.b.c,
MDCCCLXVIIL. X
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abed= abed

+ [18](a.bcd+ &c.)
+ [22](ab.cd+ &c.)
+ [112](a.b.cd+ &c.)
+[1111] a.b.c.d,

and so on; and it is required to find the relation between the coefficients ( ) and [ ];
we find, for example,

(]=— (1),
[12)=—  (12),
[11)= 3 (11)(12)
— (),
[18)=—  (13),
[22)=—  (22),
[112]= 2 (13)(12)
+ @)
~- ),
[1111]=—12 (13)(12)(11)
+ 4 (13)111)
— 3 (22)(11)(11)
+ 6 (112)(11)
—  (1111).

And it is to be noticed that, conversely, the coefficients () are given in terms of the
coefficients [ ] by the like equations with the very same numerical coefficients; in fact
from the last set of equations, this is at once seen to be the case as far as (112); and
for the next term (1111) we have
(1111)=+12[13][12][11] =
— 4[181(3[12J11]~[111])

(12)—124+12=)—12 [18][12]11]
+ 4 [13][111]

+ 3[22]11]11] +(3—6= )= 3 [22][11][11]
— 6[11]( 2[18]12] + 6 [112][11]
+[22]11] C— [

—[1111]| —[112]

having the same coeflicients —12, 44, —38, 4+6, —1 as in the formula for [1111] in
terms of the coefficients ( ); it is easy to infer that the property hold goods generally.

To explain the law for the expression of the coefficients of either set in terms of the
other set, I consider, for example, the case where the sum of the numbers in the ( ), or
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[]is=5; and I form a kind of tree as follows:

1112 11111

112 1111 11 1]

/\/\/ f

11 11

11

the formation of which is obvious; and I derive from it in the manner about to be
explained the expressions for the coefficients [14], [23] &c. in terms of the corresponding
coefficients in ( ); viz. we have

[4]=— (14,
[23]=—  (23),
[118]= (14)(13)
+ @3
— (),
[122]= (14)(22)
+ 2 (23)(12)
— (1),
[1112]=— 6 (14)(13)(12)
3 (14)22)(11)
+ 3 (14)(112)
6
3
I

N

l

(23)(12)(11)
(113)(12)
(23)(111)
(122)(11)
(1112),
[11111]=+60 (14)(13)(12)(11)
—20 (14)(18)(111)
+15 (L4)22)(11)(11)
—z0 (14)(112)(11)

+ 5 (14)(1111)
X2

+ 4+ +
- D
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+30 (23)(12)(11)(11)
—10 (23)(111)(11)
—30 (113)(12)(11)
+10 (113)(111)
—15 (122)(11)(11)
+10 (1112)(11)
— 1 (11111).
To form the symbolic parts, we follow each branch of the tree to each point of its
course: thus from the branch 113 we have

(113) belonging to [113],
(113)(111) » [11111],
(1138)(12) ’ [1112],

113)12)(11) [11111];

viz. (113) belongs to [113]; (113)(111), read 11(3 replaced by)111, belongs to [111117;
(118)(12), read 11(3 replaced by) 12, belongs to 1112; (113)(12)(11), read 11(3 replaced
by) 1(2 replaced by) 11, belongs to [11111].

And observe that where (as, for example, with the symbol 122) there are branches
derived from two or more figures, we pursue each such branch separately, and also all
or any of them simultaneously to every point in the course of such branch or branches;
thus for the branch 122 we have

(122) belonging to [122],

SZ;;EE; (same twice) " [1112],

(122)(11)(11) ” [11111].

Similarly for the branch 23 we have

(23) belonging to [23],
(23)(111) ’ [1112],
(23)(12) ’ [122],
(23)(12)(11) (same as infra) ”» [1112],
(23)(11)(111) » [11111],
(23)(11)(12) (same as supra) ”» [1112],
(23)(11)(12)(11) ” [11111].

We thus obtain the symbolic parts of the several expressions for [14], [23]....[11111]
respectively: the sign of each term is + or — according as the number of factors in ()
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is even or odd; thus in the expression for [11111], the term (14)(18)(12)(11) has four
factors, and is therefore 4, the term (113)(12)(11) has three factors, and is therefore —.
The numerical coefficients are obtained as follows. There is a common factor derived
from the expression in [ ] on the left-hand side of the equation; viz. for [11111], which
contains five equal symbols, this factor is 1.2.3.4.5, =120; for [1112], which con-
tains three equal symbols, it is 1.2.3, =6; and so on (for a symbol such as [11222]
containing two equal symbols, and three equal symbols, the factor would be 1.2.1.2.3,
=12, and so in other similar cases). In any term on the right-hand side of the equa-
tion, we must for a factor such as (11), which contains two equdl symbols, multiply
by %; for a factor such as (111), which contains three equal symbols, multiply by %,
and so on. , And in the case where a term (as, for example, the term (122)(11) or
(23)(12)(11), vide supra) oceurs more than once, the term is to be taken account of each
time that it occurs; or, what is the same thing, since the coefficient obtained as above is
the same for each occurrence, the coefficient obtained as above is to be multiplied by the
number of the occurrences of the term. For example, taking in order the several terms
of the expression for [1112], the common factor is =6, and the several coefficients are

6, 6.1, 6.1, 6.1x2, 6.1, 6.} 6.1.5x2, 6.};

and similarly in the expression for [11111] the common factor is 120, and the coeffi-
cients taken in order are

120.%, 120.%, 120.%.%.3, &c.,
without there being in this case any coeflicient with a factor arising from the plural
occurrence of the term.

The foregoing result was established by induction, and I have not attempted a general
proof.

I observe by way of a convenient numerical verification, that in each equation the
sum of the coefficients (taken with their proper signs) is (—)*'1.2..(n—1); if « be
the number of parts in the [ ] (n=5 for [11111], =4 for [1112] &c.), and moreover,
that the sum of these sums each multiplied by the proper polynomial coefficient and the
whole increased by unity is =0; viz. for

[14] [23] [118] [122] [1112] [11111],

the sums of the coefficients are

-1, =1, +2, +2, —6, 424 respectively,
and we have '
14+5(—1)4+10(—1)+410(2)+15(2)+410(—6)+41(24), =T76—T75, =0.

If we have any five distinct things (a, 5, ¢, d, ¢), then the polynomial coefficients 5, 10,
10, 15, 10, 1 denote respectively the number of ways in which these can be partitioned
in the forms 14, 28,113,122, 1112, 11111 respectively, and the last-mentioned theorem
is thus a theorem in the Partition of Numbers.



